• Title/Summary/Keyword: thermal control design

Search Result 643, Processing Time 0.032 seconds

Design of Controller for Rapid Thermal Process Using Evolutionary Computation Algorithm and Fuzzy Logic (진화 연산 알고리즘과 퍼지 논리를 이용한 고속 열처리 공정기의 제어기 설계)

  • Hwang, Min-Woong;Do, Hyun-Min;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.37-47
    • /
    • 1998
  • This paper proposes a controller design method using the evolutionary computation algorithm and the fuzzy logic to control the wafer temperature in rapid thermal processing. First, we design the feedforward static controller to provide the control powers of the lamps for the given steady state temperature. Second, the feedforward dynamic controller is designed for the additional control powers to achieve a given transient response. These feedforward controllers are implemented by using the fuzzy logic to act as a global nonlinear controller over a wide range of operating points. The parameters of these controllers are optimized by using the evolutionary computation algorithm so that it can be used when the mathematical model is not available. In addition, the feedback error controller is introduced to compensate the feedforward controllers when there exist disturbances and modeling errors. The gain of feedback error controller is also obtained by the evolutionary computation algorithm. Through simulations, we verify the proposed control system can give a satisfactory performance.

  • PDF

Design Verification of Environmental Control System by Flow Balance Test (유량평형시험을 통한 환경제어계통 설계 검증)

  • Park, Dong-Myung;Joung, Yong-In;Moon, Woo-Yong;Park, Sung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.608-615
    • /
    • 2012
  • In this study, we analyzed the system impedance of Unmanned Aerial Vehicle avionics bay and Environmental Control System(ECS), and estimated the proper air flow rate to be supplied avionics equipments. As the result of estimation, we evaluated the performance of ECS after analysing the flow balance rate and the air flow rate about each outlet port, and simultaneously decided the flow balance rate after evaluating the thermal substantiality by the thermal analysis of avionics bay. In order to verify the property of analysis result, we conducted the flow balance test using the actual avionics equipments and finally deduced the flow rate to be met system requirements of avionics equipments. Also, as the analysis results, we verified the satisfaction of system requirements at midium altitude condition and proved the performance characteristics of an Environmental Control System(ECS).

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.

On the Safety and Performance Demonstration Tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and Validation and Verification of Computational Codes

  • Kim, Jong-Bum;Jeong, Ji-Young;Lee, Tae-Ho;Kim, Sungkyun;Euh, Dong-Jin;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1083-1095
    • /
    • 2016
  • The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V&V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V&V, and the performance test results of the model pump in sodiumshowed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the safe operation of the PGSFR were explained with significant results.

Design Review of A Power Converter Topology for CEDM Driving (CEDM 구동용 전력변환회로 설계 검토)

  • Lee, J.M.;Kim, C.K.;Cheon, J.M.;Park, M.K.;Kwon, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1919-1920
    • /
    • 2006
  • This paper deals with the design review of a power converter topologies for CEDMCS (Control Element Drive Mechanism Control System). The CEDMCS provides the control signals and motive power to operate the CEDMS. The CEDM's raise and lower the CEAs (Control Element Assemblies) in the reactor core. The CEAs are constructed with the Boron-10 isotope which has a high microscopic cross section of absorption for thermal neutrons. This characteristic causes the addition of negative reactivity when a CEA is inserted and positive reactivity when it is withdrawn from the reactor core.

  • PDF

Development of a Multipurpose-Oriented Environmental Prediction Model for Plant Production System - Construction of the Basic System and its Application - (식물생산시스템의 다목적 환경예측 모델의 개발 -기본 시스템 구축 및 응용-)

  • 손정익;이동근;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.126-135
    • /
    • 1993
  • Recently, the characteristic of plant production systems in Korea has been changed with the strong trends of integration and large scale, using environmental control techniques. To satisfy this change successfully, first of all, the environmental prediction inside the system must be preceded. While many environmental prediction models for plant production system were developed by many persons, each model cannot be applied to the every situation without the perfect understanding of source codes and the technical modification. The purpose of this study is building the environmental prediction model to predict and evaluate the environment inside the system numerically, and also developing the multipurpose program available for practical design. The model consisted of the basic system model, the cultivation related model and the environmental control related model. The contents of each model are as follows : the basic system model is dealing with thermal and light environments, soil environment and ventilation : the cultivation related model with soil and hydroponic cultures ; and the environmental control related model with thermal curtain and heat exchanging system. The environmental prediction model was developed using a common simulation program, PCSMP, so that it could be easily understood and modified by anyone. Finally, the model was executed and verified through comparison between simulated and measured results for soil culture, and both results showed good agreements.

  • PDF

Design of Flight Software for Heater Control in LEO Satellites (저궤도 관측위성의 히터제어를 위한 위성비행소프트웨어 설계)

  • Lee, Jae-Seung;Shin, Hyun-Kyu;Choi, Jong-Wook;Cheon, Yee-Jin
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.141-148
    • /
    • 2011
  • LEO satellites have many heaters for thermal control, such as bus module heaters, payload heaters and battery internal heaters. Some of these heaters are controlled by thermisters, and others can be controlled by flight software. These heaters are divided into various types of group according to the location, telemetry variables, flight software logic, power distribution, etc. Thus, it is difficult to find out which heaters are included in a certain group and modify heater control logic for a new/other software developers. This document describes about the general/special control logic for satellite heaters and groups/arrays for heaters.

Model Tracking Dual Stochastic Controller Design Under Irregular Internal Noises

  • Lee Jong-Bok;Cho Yun-Hyun;Ji Tae-Young;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.652-657
    • /
    • 2006
  • Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and 1/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation.

Design Method of Diffuse Bubble Plume Aerators for Water Quality Management of Reservoirs (저수지의 수질 관리를 위한 산기판형 인공 순환 장치의 설계 방법 개발)

  • Seo, Dongil;Song, Museok;Hwang, Hyundong;Choi, Jae-hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.437-444
    • /
    • 2004
  • To control algal bloom in reservoirs in Korea, artificial circulation systems have been applied. Diffuser block aeration systems have been increasingly used in Korean reservoirs especially for shallow ones. However, there has been no sound theoretical background for the design and operation of the system. Also there has not been sufficient post-installation studies to validate the effectiveness of the system. As a result, it has been repeatedly reported that the success of the system is not certain. Proper consideration on thermal stratification regimes of reservoirs and flow dynamics induced by bubble plumes are essential elements in design processes of the aeration system. This paper discusses the current methods in the design of diffuser type aeration system and suggests a new design method based on fluid mechanical theory. Example calculations were discussed using observed data of the Yeoncho Dam and it seems that the results represent the current situation successfully.

Study on Hydration Heat and Contact the Mix-Design of Foundation Mass Concrete Using Hydration Temperature Analysis Program (수화열 해석프로그램을 이용한 기초 매스콘크리트의 사전 배합선정 및 수화열 검토)

  • Seol, Jun-Hwan;Jo, Man-Ki;Bang, Hong-Soon;Kim, Ok-Kyue
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.105-106
    • /
    • 2019
  • In this research, considering the practical conditions at field, thermal cracking method was suggested based on the comparative analysis between predicted value and actual value obtained from the actual structure member with optimum mix design. The optimum mix design was deduced from the various mix designs with various proportions of cementitious binder for upper and lower placement lifts of mat-foundation mass concrete. Therefore, it can be stated that applying low heat mix design and different heating technique between upper and lower placement lifts for mass concrete are efficient to control the thermal cracking. As future issues, based on the interpretation result value, we will select the optimal combination that is applied specifically to the actual site, and deeply analyze the correlation between the measured value and the analysis value through the combination and the test of the actual structure.

  • PDF