• Title/Summary/Keyword: thermal contraction

Search Result 153, Processing Time 0.029 seconds

Erratum to: "Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy"

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.317-321
    • /
    • 2003
  • The grain-boundary microcracking materials in the system A1$_2$Ti $O_{5}$ -ZrTi $O_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$K compared to 8.29$\times$10$^{-6}$K of pure ZrTi $O_4$and 0.68$\times$10$^{-6}$K of polycrystalline A1$_2$Ti $O_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of A1$_2$Ti $O_{5}$ , 9.70$\times$10$^{-6}$K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal axes of the A1$_2$Ti $O_{5}$ phase.

A Study of Thermal Effects for a Half-Circumferential Grooved Journal Bearing (半圓周形 윤활홈을 갖는 저어널 베어링의 熱效果에 관한 연구)

  • Chun, Sang-Myung;Lalas, Demetrius P.
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.36-51
    • /
    • 1990
  • A parametric study of the thermal effects of a half-circumferential grooved journal bearings under aligned and misaligned conditions has been carried out by solving numerically the coupled Reynolds and energy equation system. Five different sets of boundary conditions for the energy equation have been used which include mixing between recirculating oil and inlet oil and a contraction ratio for the cavitation region. The effects of changes of the inlet oil temperature and pressure, the wall temperature and the L/D ratio have also been examined. For the range of parameters found in internal combustion engines, the mixing effectiveness at the groove and the resulting final mixture temperature have been found to be as important as the wall temperature and the heat transfer rate. The variability of the temperature, though, has been shown to smooth out the peaks of both pressure and friction during misaligned condition Distributions of friction and pressure in the oil are also examined which may be useful in attempts to reduce friction without reducing load. Results for an axial grooved bearing are also presentsed for comparision purpose.

The Measurement of Real Deformation Behavior in Pilot LNG Storage Tank Membrane by using Strain Gage (스트레인 게이지를 이용한 Pilot LNG 저장탱크 멤브레인 실 변형 거동 측정)

  • Kim, Young-Kyun;Yoon, Ihn-Soo;Oh, Byoung-Taek;Hong, Seong-Ho;Yang, Young-Myung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.108-113
    • /
    • 2004
  • Korea Gas Corp. has developed the design technology of the LNG storage tank. The membrane to be applied inside of the LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature changes. It is very important to measure their thermal strains under LNG temperatures by analytical and experimental stress analysis of the membrane. We have developed a stress measurement system using strain gages and measured the strain during cooldown and storing the LNG. We also analyzed the measured data by comparison with the FEM data. On the basis of these results, we could design and assure the application of the Kogas Membrane to large scale LNG storage.

  • PDF

The Study on Improvement in Subcooling of TMA Clathrate for PCM in Ice Storage System (빙축열시스템 PCM용 TMA-포접화합물의 과냉도 개선에 대한 연구)

  • Kim, J.H.;Chung, N.K.;Kim, C.O.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1663-1666
    • /
    • 2003
  • TMA clathrate that is used by PCM of ice storage system in this research creates hydrate crystallization at higher temperature than pure water, and application is expected as PCM because having comparative big dormant temperature without phase separation phenomenon. In case this research uses TMA clathrate by PCM, choose admixture by purpose to control or remove subcooling of TMA clathrate and evaluated experimentally. Subcooling is improved and can expect contraction of freezing machine running time and increase of coefficient of performance as that add admixture to TMA clathrate conclusively. Also, may supply thermal storage system that apply low temperature potential heat thermal storage material that subcooling is improved more extensively laying stress on medium size building and small size building, can expect allowance through localization of ice storage system.

  • PDF

A Study on the Effects of the Design Parameters and Sealing Mechanism of the Exhaust Gas in Engine Exhaust System (엔진 배기계의 배기가스 누설 메카니즘과 설계인자들의 영향에 관한 연구)

  • Choi, B.L.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 2010
  • This paper deals with the sealing mechanism of the gasket component and the effects of design parameters for the exhaust manifold. The finite element model includes hot-end exhaust system and a simplified gasket model supplied by ABAQUS software. The mechanical behaviors of bead and body of a gasket are measured after several times of cyclic loads by gasket supplier. From the finite element analysis due to the cyclic thermal loads, the flange of exhaust manifold shows thermal expansion and contraction in longitudinal direction as well as convex and concave deformations with respect to the engine cylinder head. And, the contact pressures of the gasket beads suddenly changes by normal deformation of inlet flanges. Therefore, the magnitudes of contact pressures could be used to determine the sealing characteristics of the exhaust gas in the exhaust system. The distributions of contact pressures in gasket bead lines shows a good agreement with the engine test results.

A Design and Structural Analysis of the Superconducting Magnet Supporting Post (초전도자석 지지각 설계 및 구조해석)

  • 허남일;도철진;사정우;조승연;임기학;KSTAR설계팀
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.115-118
    • /
    • 2000
  • The superconducting magnet supporting post of the KSTAR system is a flexible structure that absorbs thermal shrink of the superconducting magnet and also a rigid structure that supports the weight of the magnet and dynamic loads. In this work, a structural analyses for the post under the loads were performed. As a result, it turns out that the post would be safe when it is exposed to the loads, such as magnet weight, thermal contraction, and plasma vertical disruption load. And, Buckling and modal analysis results of the post are presented.

  • PDF

Clinical Observation on 1 Case of Both Leg Paralysis Patient Diagnosed Wei Symptom (위증(療證)으로 진단한 하지마비 환자의 치험 1례)

  • Wei, Tung-Sheun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.748-752
    • /
    • 2006
  • Wei symptom(?證) is symptom that reveals muscle relaxation without contraction and muscle relaxation occurs in the lower or upper limb, in severe case, leads to death. This is the clinical report about the Wei symptom(?證)-patient doubt as Transverse Myelitis and Conversion Disorder. The patient was treated by acupuncture, moxibustion, herb medication(十全大補湯), electriccal stimulation theraphy, Bee Venom acupuncture, and had significant improvement in Wei symptom(?證). these results suggest the surface temperature differ remarkably from before being treated. The temperature is measured by using Digital Infrared Thermal Imaging(DITI). The results suggest that oriental medicare is an effective treatment for Wei symptom. We expected that therapeutic value of treatment of both leg Paralysis in the oriental medicine will be higher if more clinical studies and researches are accomplished.

A study on the Thermal Deformation of Line Heated TMCP and Normalizing Steel (선상가열한 TMCP 및 Normalizing 강재의 열변형에 관한 연구)

  • Kim, Jeong-Tae;Lee, Kwang-Sung;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.46-51
    • /
    • 2016
  • The TMCP steel has expanded in the marine structure during manufacturing process because of its excellent weld-ability and impact toughness. In the case of merchant ships, coverage of TMCP steel has been used widely on over DH36 Classifications material. The line heating process is applied to the outer surface of the steel plate for the shipbuilding. In this study, We compared between TMCP and normalizing steel for shipbuilding by analyzing some basic data through performing the natural cooling after the line heating. The experimental results show the angular misalignment changes in line heating. Heated surface of normalizing steel material expanded to $-0.3^{\circ}$ and reduced to $+0.2^{\circ}$ after cooling. And during cooling at $194^{\circ}C$ for 1,500 seconds, Angular Misalignment began from - direction to + direction, passed the critical point to the default at 2,200 seconds and did not take place any more at $103^{\circ}C$ after the 2,700 seconds. Angular Misalignment results of TMCP steels and Normalizing steel material show same angular misalignment lasted 1,200 seconds, TMCP steel has given more expansion and contraction angle which is $0.2^{\circ}$ than that of the Normalizing steel. Length difference between expansion and contraction is about 0.3 mm.

EFFECTS OF CONVERGENT ANGLE OF NOZZLE CONTRACTION ON HIGH-SPEED OPTICAL FIBER COATING FLOW (노즐 축소부 수렴각이 고속 광섬유 피복유동에 미치는 영향)

  • Park, S.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.11-18
    • /
    • 2016
  • A numerical study is conducted on the optical fiber coating flow in a primary coating nozzle consisting of three major parts: a resin chamber, a contraction and a coating die of small diameter. The flow is driven by the optical fiber penetrating the center of the nozzle at a high speed. The axisymmetric two-dimensional flow and heat transfer induced by viscous heating are examined based on the laminar flow assumption. Numerical experiments are performed with varying the convergent angle of nozzle contraction and the optical fiber drawing speed. The numerical results show that for high drawing speed greater than 30 m/s, there is a transition in the essential flow features depending on the convergent angle. For a large convergent angle greater than $30^{\circ}$, unfavorable multicellular flow structures are monitored, which could be associated with wall boundary-layer separation. In the regime of small convergent angle, as the angle increases, the highest resin temperature at the exit of die and the coating thickness decrease but the sensitivity of coating thickness on drawing speed and the maximum shear strain of resin on the optical fiber increase. The effects of the convergent angle are discussed in view of compromise searching for an appropriate angle for high-speed optical fiber coating.

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.