• 제목/요약/키워드: thermal behaviors

검색결과 773건 처리시간 0.022초

배출가스 중 응축성미세먼지 특성 연구 (A Study on the Characteristics of Condensable Fine Particles in Flue Gas)

  • 공부주;김종현;김혜리;이상보;김형천;조정화;김정훈;강대일;박정민;홍지형
    • 한국대기환경학회지
    • /
    • 제32권5호
    • /
    • pp.501-512
    • /
    • 2016
  • The study evaluated methods to measure condensable fine particles in flue gases and measured particulate matter by fuel and material to get precise concentrations and quantities. As a result of the method evaluation, it is required to improve test methods for measuring Condensable Particulate Matter (CPM) emitted after the conventional Filterable Particulate Matter (FPM) measurement process. Relative Standard Deviation (RSD) based on the evaluated analysis process showed that RSD percentages of FPM and CPM were around 27.0~139.5%. As errors in the process of CPM measurement and analysis can be caused while separating and dehydrating organic and inorganic materials from condensed liquid samples, transporting samples, and titrating ammonium hydroxide in the sample, it is required to comply with the exact test procedures. As for characteristics of FPM and CPM concentrations, CPM had about 1.6~63 times higher concentrations than FPM, and CPM caused huge increase in PM mass concentrations. Also, emission concentrations and quantities varied according to the characteristics of each fuel, the size of emitting facilities, operational conditions of emitters, etc. PM in the flue gases mostly consisted of CPM (61~99%), and the result of organic/inorganic component analysis revealed that organic dusts accounted for 30~88%. High-efficiency prevention facilities also had high concentrations of CPM due to large amounts of $NO_x$, and the more fuels, the more inorganic dusts. As a result of comparison between emission coefficients by fuel and the EPA AP-42, FPM had lower result values compared to that in the US materials, and CPM had higher values than FPM. For the emission coefficients of the total PM (FPM+CPM) by industry, that of thermal power stations (bituminous coal) was 71.64 g/ton, and cement manufacturing facility (blended fuels) 18.90 g/ton. In order to estimate emission quantities and coefficients proper to the circumstances of air pollutant-emitting facilities in Korea, measurement data need to be calculated in stages by facility condition according to the CPM measurement method in the study. About 80% of PM in flue gases are CPM, and a half of which are organic dusts that are mostly unknown yet. For effective management and control of PM in flue gases, it is necessary to identify the current conditions through quantitative and qualitative analysis of harmful organic substances, and have more interest in and conduct studies on unknown materials' measurements and behaviors.

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • 공보현;조형균;송근만;윤대호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

재활용원료의 첨가량과 입경에 따른 재생 ${Al_2}{O_3}$ 세라믹스의 소결 특성 (Sintering Properties of Renewed ${Al_2}{O_3}$Ceramics with Particle Size and Addition Amount of Recycling Powder)

  • 신대용;한상목;김경남
    • 한국세라믹학회지
    • /
    • 제38권12호
    • /
    • pp.1123-1131
    • /
    • 2001
  • 재활용 $Al_2$O$_3$분말인 구조재료용 $Al_2$O$_3$세라믹스의 분쇄분말과 폐Al$_2$O$_3$흡착제의 첨가량과 입경에 따른 재생 $Al_2$O$_3$세라믹스의 소결특성을 조사하였다. 1,$650^{\circ}C$에서 5시간 소결한 순수 $Al_2$O$_3$시편을 급랭하여 분쇄한 -40과 +40$\mu$m의 $Al_2$O$_3$분말과 폐Al$_2$O$_3$흡착제를 순수한 $Al_2$O$_3$분말에 10~50wt% 첨가한 후, 재소결하여 재생 $Al_2$O$_3$세라믹스를 제조하였다. 재활용 $Al_2$O$_3$분말의 첨가량과 입경에 관계없이 소결온도가 증가함에 따라 시편의 밀도와 3점곡강도는 증가하였으나, 동일 소결온도에서는 재활용 $Al_2$O$_3$분말의 첨가량이 증가함에 따라 밀도와 3점곡강도는 감소하였다. ~30wt%의 $Al_2$O$_3$분쇄분말(-40$\mu$m), ~20wt%의 $Al_2$O$_3$분쇄분말(+40$\mu$m) 및 10wt%의 폐Al$_2$O$_3$흡착제를 첨가한 시편의 3점곡강도는 200MPa 이상이었다. 재생 $Al_2$O$_3$시편의 치밀화를 위하여 5~20wt%의 폐유리분말을 첨가하여 1200~1$650^{\circ}C$에서 5시간 소결한 시편은 폐유리분말의 첨가량이 증가함에 따라 최대 밀도와 3점곡강도를 나타내는 온도는 감소하였으나, 140$0^{\circ}C$이상에서는 페유리분말을 첨가하지 않은 시편에 비하여 밀도와 3점곡강도가 감소하여 재생 $Al_2$O$_3$세라믹스의 소결성 향상에는 기여하지 못하였다.

  • PDF