• 제목/요약/키워드: thermal behaviors

Search Result 767, Processing Time 0.03 seconds

Comparison of the effects of irradiation on iso-molded, fine grain nuclear graphites: ETU-10, IG-110 and NBG-25

  • Chi, Se-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2359-2366
    • /
    • 2022
  • Selecting graphite grades with superior irradiation characteristics is important task for designers of graphite moderation reactors. To provide reference information and data for graphite selection, the effects of irradiation on three fine-grained, iso-molded nuclear grade graphites, ETU-10, IG-110, and NBG-25, were compared based on irradiation-induced changes in volume, thermal conductivity, dynamic Young's modulus, and coefficient of thermal expansion. Data employed in this study were obtained from reported irradiation test results in the high flux isotope reactor (HFIR)(ORNL) (ETU-10, IG-110) and high flux reactor (HFR)(NRL) (IG-110, NBG-25). Comparisons were made based on the irradiation dose and irradiation temperature. Overall, the three grades showed similar irradiation-induced property change behaviors, which followed the historic data. More or less grade-sensitive behaviors were observed for the changes in volume and thermal conductivity, and, in contrast, grade-insensitive behaviors were observed for dynamic Young's modulus and coefficient of thermal expansion changes. The ETU-10 of the smallest grain size appeared to show a relatively smaller VC to IG-110 and NBG-25. Drastic decrease in the difference in thermal conductivity was observed for ETU-10 and IG-110 after irradiation. The similar irradiation-induced properties changing behaviors observed in this study especially in the DYM and CTE may be attributed to the assumed similar microstructures that evolved from the similar size coke particles and the same forming method.

Thermal Properties and Water Sorption Behaviors of Epoxy and Bismaleimide Composites

  • Seo, Jong-Chul;Jang, Won-Bong;Han, Hak-Soo
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.10-16
    • /
    • 2007
  • In this work, we prepared epoxy/BMI composites by using N,N'-bismaleimide-4,4'-diphenylmethane (BMI), epoxy resin (diglycidyl ether of bisphenol-A (DGEBA)), and 4,4'-diamino diphenyl methane (DDM). The thermal properties and water sorption behaviors of the epoxy and BMI composites were investigated. For the epoxy/BMI composites, the glass transition and decomposition temperatures both increased with increasing BMI addition, which indicates the effect of BMI addition on improved thermal stability. The water sorption behaviors were gravi-metrically measured as a function of humidity, temperature, and composition. The diffusion coefficient and water uptake decreased and the activation energy for water diffusion increased with increasing BMI content, indicating that the water sorption in epoxy resin, which causes reliability problems in electronic devices, can be diminished by BMI addition. The water sorption behaviors in the epoxy/BMI composites were interpreted in terms of their chemical and morphological structures.

PL and TL behaviors of Ag-doped SnO2 nanoparticles: effects of thermal annealing and Ag concentration

  • Zeferino, R. Sanchez;Pal, U.;Melendrez, R;Flores, M. Barboza
    • Advances in nano research
    • /
    • 제1권4호
    • /
    • pp.193-202
    • /
    • 2013
  • In this article, we present the effects of Ag doping and after-growth thermal annealing on the photoluminescence (PL) and thermoluminescence (TL) behaviors of $SnO_2$ nanoparticles. $SnO_2$ nanoparticles of 4-7 nm size range containing different Ag contents were synthesized by hydrothermal process. It has been observed that the after-growth thermal annealing process enhances the crystallite size and stabilizes the TL emissions of $SnO_2$ nanostructures. Incorporated Ag probably occupies the interstitial sites of the $SnO_2$ lattice, affecting drastically their emission behaviors on thermal annealing. Both the TL response and dose-linearity of the $SnO_2$ nanoparticles improve on 1.0% Ag doping, and subsequent thermal annealing. However, a higher Ag content causes the formation of Ag clusters, reducing both the TL and PL responses of the nanoparticles.

분사주조에 의한 입자강화 금속기지 복합재료의 제조시 액적의 열적거동과 미세조직에 대한 고찰 (Microstructure and Thermal Behaviors of Droplets During the Formation of Particle Reinforced Metal Matrix Composites by Spray Casting Process)

  • 김명호;배차헌;정해용;박흥일
    • 한국주조공학회지
    • /
    • 제12권4호
    • /
    • pp.326-334
    • /
    • 1992
  • Particle-reinforced metal matrix composites via the Osprey spray casting process were fabricated by injecting second phase particles of $Al_2O_3$(<$40{\mu}m$) and W($6{\mu}m$) into the spray of Cu droplets, and the thermal behaviors of the composite droplets during flight were considered theoretically on the basis of mixing modes between the Cu droplets and the reinforced particulates injected. It was found that the W-injected spray is comprised of particle-embedded droplets, and the $Al_2O_3-injected$ spray comprises particle-attached droplets. From the predicted results of the thermal behaviors of the composite droplets and preforms produced, it is concluded that the thermal behaviors of the composite droplets during flight, and during the subsequent deposition are strongly influenced by its mixing modes between the reinforced particulates and Cu droplets during flight.

  • PDF

소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석 (Analysis of the thermal behaviors of the cylinder block of a small gasoline engine)

  • 김병탁;박진무
    • 오토저널
    • /
    • 제15권3호
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

Analysis of three-dimensional thermal gradients for arch bridge girders using long-term monitoring data

  • Zhou, Guang-Dong;Yi, Ting-Hua;Chen, Bin;Zhang, Huan
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.469-488
    • /
    • 2015
  • Thermal loads, especially thermal gradients, have a considerable effect on the behaviors of large-scale bridges throughout their lifecycles. Bridge design specifications provide minimal guidance regarding thermal gradients for simple bridge girders and do not consider transversal thermal gradients in wide girder cross-sections. This paper investigates the three-dimensional thermal gradients of arch bridge girders by integrating long-term field monitoring data recorded by a structural health monitoring system, with emphasis on the vertical and transversal thermal gradients of wide concrete-steel composite girders. Based on field monitoring data for one year, the time-dependent characteristics of temperature and three-dimensional thermal gradients in girder cross-sections are explored. A statistical analysis of thermal gradients is conducted, and the probability density functions of transversal and vertical thermal gradients are estimated. The extreme thermal gradients are predicted with a specific return period by employing an extreme value analysis, and the profiles of the vertical thermal gradient are established for bridge design. The transversal and vertical thermal gradients are developed to help engineers understand the thermal behaviors of concrete-steel composite girders during their service periods.

Computer Simulations on the Thermal Behaviors of a Friction Pad in High-Speed Train Disk Brakes

  • Kim, Chung Kyun
    • KSTLE International Journal
    • /
    • 제1권2호
    • /
    • pp.95-100
    • /
    • 2000
  • The thermal behaviors of disk-pad braking models has been analyzed for a high-speed train brake system using the coupled thermal-mechanical analysis technique. The temperature distribution, thermal distortion, and contact stress in the disk-pads contact model have been investigated as functions of the convective heat transfer rate. The FEM results indicate that multiple spot type pads show more stabilized thermal characteristics compared with those of the flat type pads for the increased convective heat transfer rate. The maximum contact stress for a friction pad loaded against a rubbing disk was occurred on the edge of the pad at the disk-pad interface.

  • PDF

Strip Tension Control Considering the Temperature Change in Multi-Span Systems

  • Lee Chang Woo;Shin Kee Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.958-967
    • /
    • 2005
  • The mathematical model for tension behaviors of a moving web by Shin (2000) is extended to the tension model considering the thermal strain due to temperature variation in furnace. The extended model includes the terms that take into account the effect of the change of the Young's Modulus, the thermal coefficient, and the thermal strain on the variation of strip tension. Computer simulation study proved that the extended tension model could be used to analyze tension behaviors even when the strip goes through temperature variation. By using the extended tension model, a new tension control method is suggested in this paper. The key factors of suggested tension control method include that the thermal strain of strip could be compensated by using the velocity adjustment of the helper-rollers. The computer simulation was carried out to confirm the performance of the suggested tension control method. Simulation results show that the suggested tension control logic not only overcomes the problem of the traditional tension control logic, but also improves the performance of tension control in a furnace of the CAL (Continuous Annealing Line).

Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers

  • ;강훈구;;;노재근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.219-219
    • /
    • 2012
  • The formation and thermal desorption behaviors of octanethiol (OT) SAMs on single crystalline Au (111) and polycrystalline Au, Ag, and Cu substrates were examined by X-ray photoelectron microscopy (XPS), thermal desorption spectroscopy (TDS), and contact angle (CA) measurements. XPS and CA measurements revealed that the adsorption of octanethiol (OT) molecules on these metals led to the formation of chemisorbed self-assembled monolayers (SAMs). Three main desorption fragments for dioctyl disulfide (C8SSC8+, dimer), octanethiolate (C8S+), and octanethiol (C8SH+) were monitored using TDS to understand the effects of surface morphology and the nature of metal substrates on the thermal desorption behavior of alkanethiols. TDS measurements showed that a sharp dimer peak with a very strong intensity on single crystalline Au (111) surface was dominantly observed at 370 K, whereas a broad peak on the polycrystalline Au surface was observed at 405 K. On the other hand, desorption behaviors of octanethiolates and octanethiols were quite similar. We concluded that substrate morphology strongly affects the dimerization process of alkanethiolates on Au surfaces. We also found that desorption intensity of the dimer is in the order of Au>>Ag>Cu, suggesting that the dimerization process occurs efficiently when the sulfur-metal bond has a more covalent character (Au) rather than an ionic character (Ag and Cu).

  • PDF

도시 거주 남자 대학생의 자각적 내한내열성과 체온조절 행동 (Thermoregulatory Behavior and Self-identified Thermal Tolerance of Young Males Residing in Urban Area)

  • 김다미;정다희;박준희;이주영
    • 한국지역사회생활과학회지
    • /
    • 제27권2호
    • /
    • pp.245-263
    • /
    • 2016
  • This study was conducted to investigate the thermoregulatory behavior of young males in terms of self-identified thermal tolerance. We recruited 436 male students from Seoul ($24.0{\pm}4.6yr$ in age, $175.3{\pm}5.5cm$ in height, $70.1{\pm}10.6kg$ in body mass, and $23.0{\pm}2.7$ in BMI) in accordance with four types of self-identified thermal tolerance: 1) tolerable of both cold and heat, BCH (N=15); 2) heat tolerable only, HTO (N=118); 3) cold tolerable only, CTO (N=162); and 4) neither cold nor heat tolerable, NCH (N=141). The questionnaire consisted of 55 questions regarding preference to cold or heat environment, seasonal thermoregulatory behaviors including clothing habits, seasonal sleeping environments, health care/physical fitness, and anthropometric items. The results showed that: 1) BCH preferred less auxiliary heating devices, gloves/hats, or thermal underwear in winter and had very few experiences with cold/heat injuries or catching a cold, whereas NCH showed the opposite behavior and experiences as BCH; 2) thermoregulatory behaviors were not symmetrical between summer and winter. Most male students preferred cold beverage/foods to using cooling devices to lower body temperature in summer, whereas auxiliary heating devices were preferred to warm beverage/foods to maintain body temperature in winter; 3) thermoregulatory behaviors of NCH had more items in common with HTO than CTO, while the behaviors of BCH were more closely related to CTO than the behaviors of BCH were more closely related to CTO than HTO. Overall, we confirmed that thermoregulatory behaviors were apparently classified by self-identified thermal tolerance, and such behaviors could be adjusted by improving cold or heat tolerance.