• Title/Summary/Keyword: thermal behaviors

Search Result 767, Processing Time 0.029 seconds

Experimental Studies on the Effect of Various Design Parameters on Thermal Behaviors of High Strength Concrete Columns under High Temperatures (다양한 설계변수에 따른 고강도 콘크리트 기둥의 열적 거동 분석을 위한 실험 연구)

  • Shin, Yeong-Soo;Park, Jee-Eun;Mun, Ji-Young;Kim, Hee-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • Although concrete is considered as fire proof materials, high strength concrete shows severe material and structural damages when exposed to fire. To understand such damages in high strength concrete structures, the effects of various design parameters and fire condition on the thermal behaviors of high strength concrete structures are investigated in this study. In order to achieve this goal, fire tests are performed on high strength concrete columns with different fire conditions and design parameters including cross sectional area, cover thickness, and reinforcement alignment. To investigate thermal behaviors, temperature distributions and amount of spalling are measured. In overall, the columns show rapidly increasing inner temperatures between 30~60 mins of the fire tests due to spalling. In detail, the higher temperature distributions are observed from the columns with the larger cross section and less cover thickness. Moreover, among the columns with same reinforcing ratio, larger number of reinforcements with the smaller diameter causes the higher temperature distribution. The findings from the experimental study allow not only understanding of thermal behaviors of high strength concrete columns under fire, but also guidance in revising fire safety design.

Thermal Behaviors of Nd2Fe14B/Fe3B Based Nanocomposite Magnets

  • Yang, Choong-Jin;Park, Eon-Byung;Choi, Seung-Duck
    • Journal of Magnetics
    • /
    • v.3 no.1
    • /
    • pp.4-8
    • /
    • 1998
  • Two different compositions of melt spun magnetic alloys, $ Nd_4Fe_{80}B_{16} and Nd_4Fe_{76}Co}\_3Hf_{0.5}Ga_{0.5}B_{16},$ were characterized in terms of magnetic properties and thermal behaviors. It was found that the addition of Hf and Ga effectively slow down the crystallization rate of the nanocomposite $ Nd_2Fe_{14}B/Fe_3B$ magnet. Coercivity(iHc) changes only slightly with varying the post annealing conditions confirming that iHc is not a sensitive magnetic quantity as a function of grain size and exchange coupled interaction. The experimentally observed behaviors of Mr and Hc do not vary monotonously with in-creasing grain size which is not in agreement with the numerically calculated result near the critical grain size (dc). The plot of the grain size dependence for the remanence and coercivity in isotrop!c nanocomposite magnets has been revised in this study. The maxium energy product, $(B, H)_{max}$ =15.34 MGOe, and a reduced remanence, Mr/Ms=0.84 were obtained, respectively.

  • PDF

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Syntheses and Thermal Behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O

  • Luo, Jinan;Xu, Kangzhen;Wang, Min;Song, Jirong;Ren, Xiaolei;Chen, Yongshun;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2867-2872
    • /
    • 2010
  • Two new energetic organic alkali metal salts, 1,1-diamino-2,2-dinitroethylene rubidium salt [Rb(FOX-7)${\cdot}H_2O$] and 1,1-diamino-2,2-dinitroethylene cesium salt [Cs(FOX-7)${\cdot}H_2O$], were synthesized by reacting of 1,1-diamino-2,2-dinitroethylene (FOX-7) and rubidium chloride or cesium chloride in alkali methanol aqueous solution, respectively. The thermal behaviors of Rb(FOX-7)${\cdot}H_2O$ and Cs(FOX-7)${\cdot}H_2O$ were studied with DSC and TG methods. The critical temperatures of thermal explosion of the two compounds are 216.22 and $223.73^{\circ}C$, respectively. Specific heat capacities of the two compounds were determined with a micro-DSC method, and the molar heat capacities are 217.46 and $199.47\;J\;mol^{-1}\;K^{-1}$ at 298.15 K, respectively. The adiabatic times-to-explosion were also calculated to be a certain value of 5.81 - 6.36 s for Rb(FOX-7)${\cdot}H_2O$, and 9.92 - 10.54 s for Cs(FOX-7)${\cdot}H_2O$. After FOX-7 becoming alkali metal salts, thermal decomposition temperatures of the compounds heighten with the rise of element period, but thermal decomposition processes become intense.

Thermal Stress Characteristics of a Disk Pad in High-Speed Brakes (고속용 브레이크에서 디스크 패드의 열응력 특성에 관한 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 1998
  • The thermal characteristics of a disk such as temperature distribution, thermal behaviors and thermal stress during a braking operation has been analyzed for a high-speed brake using the finite element method. The maximum stress for a pad loaded against a disk was occurred at the trailing and leading edges of the disk pad at the underlayer-backplate interface. The FEM results indicate that the thermal characteristics of the spot type pad shows good performance compared with those of the flat type pad. Thus, the spot type pad in brake system may be recommended for the high-speed train system.

The Effects of Heat Diffusion Fin on the Thermal Behavior and Performance of Radiant Heatomg Panel (방열핀이 난방용 패널의 열적거동 및 성능에 미치는 영향)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2486-2493
    • /
    • 1994
  • Transient heat transfer characteristics in th radiant heating panel with heat diffusion fin were predicted by numerical analysis. Thermal behaviors of panel, such as temperature distributions in panel and convective and radiative heat fluxes in panel surface with advance of time, were obtained for several important parameters. The performance and thermal comfort of heating panel were studied and compared for various design conditions, such as pipe pitch, area ratio and thermal conductivity of optimal design of the new heating panels with heat diffusion fin. It was concluded that the efficient area ratio of heat diffusion fin is about 0.5, and the greater the thermal conductivity of fin is, the better the performance of panel is.

Research on Indoor Thermal Environment and Residents' Control Behavior of Cooling according to Household Type in Apartment (가구 유형에 따른 여름철 공동주택의 실내온열환경과 냉방 조절 행위에 관한 연구)

  • Bae, Chi-Hye;Bae, Nu-Ri;Chun, Chung-Yoon
    • Journal of the Korean housing association
    • /
    • v.19 no.1
    • /
    • pp.89-96
    • /
    • 2008
  • This study measured the thermal environment and residents' control behaviors of cooing according to 3 groups of household type-families with preschool children, families of middle age and families of senior. The object of this study are to fmd the difference of the actual condition of indoor thermal environment and cooling control behavior by age or household type and to develop user oriented climate control system. The results were summarized as follows. When the age of members at household is younger, the indoor mean temperature and temperature that people turned off the air conditioner became lower. These different indoor thermal environment of each group means that younger generation is familiar with cooler from their early age and these early uses of cooler made them prefer cooler condition than family of senior. Therefore, this results show that different indoor thermal environment is influenced by factors such as household type and metabolism difference and so on.

Dynamic Simulation of Annual Energy Consumption in an Office Building by Thermal Resistance-Capacitance Method

  • Lee, Chang-Sun;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.1-13
    • /
    • 1998
  • The basic heat transfer process that occurs in a building can best be illustrated by an electrical circuit network. Present paper reports the dynamic simulation of annual energy consumption in an office building by the thermal resistance capacitance network method. Unsteady thermal behaviors and annual energy consumption in an office building were examined in detail by solving the simultaneous circuit equations of thermal network. The results are used to evaluate the accuracy of the modified BIN method for the energy consumption analysis of a large building. Present thermal resistance-capacitance method predicts annual energy consumption of an office building with the same accuracy as that of response factor method. However, the modified BIN method gives 15% lower annual heating load and 25% lower cooling load than those from the present method. Equipment annual energy consumptions for fan, boiler and chiller in the HVAC system are also calculated for various control systems as CAV, VAV, FCU+VAV and FCU+CAV. FCU+CAV system appears to consume minimum annual energy among them.

  • PDF

A Study on the thermal behaviors of a machine tool with linear motors (리니어 모터를 적응한 공작기계의 열변형 특성에 관한 연구)

  • 김종진;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.36-40
    • /
    • 2002
  • The development of feed drive system with high speed and accuracy has been a major issue in the machine tool industry. Linear motors can be used as the efficient tool to achieve fast feed mechanism and high accuracy. However. a high speed feed drive system with linear motors can generate heat problems such as the variation of temperature distribution and the resultant thermal stress. In this paper, the important heat sources and the resultant thermal errors are presented. The thermal deformation characteristics of the machine tool with linear motors were identified, which are thermal expansion of linear scale, shrinkage, expansion and bending in the machine tool structure.

  • PDF

Calibration of Strain Gauge for Thermal Expansion Coefficientof Fiber Reinforced Composites at Cryogenic Temperature (극저온 환경에서의 섬유강화 복합재료의 열팽창 계수 측정을 위한스트레인 게이지의 보정에 관한 연구)

  • Lee, Won-Oh;Lee, Sang-Bok;Yi, Jin-Woo;Um, Moon-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • Since the fiber reinforced polymeric (FRP) composites are considered in next generation of space transportation systems, reliable thermal expansion properties should be well provided for structural design of composite materials. To obtain accurate mechanical behaviors at a cryogenic temperature, precise strain measurement and calibration must be provided. In this work, apparent strains (or thermal output) of temperature self-compensated strain gages were deliberately investigated for epoxy, CTBN modified epoxy and carbon fabric composite system from room temperature to liquid nitrogen temperature. Also, fourth-order thermal output curves were presented for the further calibration. The results showed that the thermal output is heavily dependent on test materials and a large amount of apparent strains were observed for the polymer resins.