• Title/Summary/Keyword: thermal balance

Search Result 350, Processing Time 0.028 seconds

THERMAL BALANCE MODELLING AND PREDICTION FOR A GEOSTATIONARY SATELLITE (정지궤도 위성의 열평형 시험 모델링 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.142-147
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be tested under vacuum condition and very low temperature in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels such as north and south panels. They will be controlled from 90K to 273K by circulating GN2 and LN2 alternatively according to the test phases, while the shroud of the vacuum chamber will be under constant temperature, 90K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

  • PDF

A Study on Generating Process of Regional Balance Point Temperature for Heating Degree-days in Korea (국내 난방도일의 지역별 균형점온도 산정 과정에 관한 연구)

  • Park, So Min;Song, Doo Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.9
    • /
    • pp.482-495
    • /
    • 2017
  • Degree-days are practically used as a tool to estimate energy consumption for heating and cooling. Degree-days are calculated by summing differences of balance point temperature and outside temperature for the analyzed period. Determining balance point temperature is a key point in calculating accurate degree-days. However, ASHRAE standards are used for balance point temperature in Korea because balance point temperature considering climate conditions and building thermal performance is not proposed in Korea. This study proposes the process to generate balance point temperature for heating degree-days considering Korean climate and building conditions. Also, a new balance point temperature for three regions in Korea will be suggested in this study. Balance point temperature of Seoul is approximately $15.0^{\circ}C$, lower than the current standard of $18.3^{\circ}C$. Balance point temperature of Seoul considering climate conditions and building performance can be different from the ASHRAE suggested value ($18.3^{\circ}C$). Results revealed the current standard for balance point temperature should be changed considering climate and building conditions in Korea.

Modelling and Preliminary Prediction of Thermal Balance Test for COMS (통신해양기상위성의 열평형 시험 모델 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.403-416
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and developed by KARl for communication, ocean and meteorological observations. It will be tested under vacuum and very low temperature conditions in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels of satellite such as north and south panels. They will be controlled from 90 K to 273 K by circulating GN2 and LN2 alternatively according to the test phases, while the main shroud of the vacuum chamber will be under constant temperature, 90 K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

Development of Cooling System for Thermal Management and Water Balance in Fuel Cell Vehicle (연료전지 차량의 열 및 물 균형 유지를 위한 냉각 시스템 개발)

  • Kim, Seong-Kyun;Lee, Seung-Yong;Kim, Chi-Myung;Park, Yong-Sun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.113-117
    • /
    • 2006
  • This paper Is for development of cooling module in order to maintain heat and water balance in fuel cell vehicle. Thermal management system for fuel cell is disadvantage because the temperature of coolant is lower than that of ICE and heat duty of radiator is higher. By CFD simulation, cool ing module was developed for water balance of system. Hot chamber test and hot area/high altitude test on cool ing module was completed.

  • PDF

A Study on Chamber Wall Effect in the Satellite Thermal Balance Test (위성 열평형 시험에서 챔버 벽 영향에 관한 연구)

  • Kim, Dong-Un;Jang, Yeong-Geun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.90-95
    • /
    • 2006
  • The wall of thermal vacuum chamber which is used for the satellite thermal balance test doesn't absorb satellite's IR emission perfectly and reflects some part of that. It is estimated that small thermal vacuum chamber has relatively larger wall effect than the big one. The small thermal vacuum chamber is required for the small satellite test to reduce the test cost. A quantitative analysis was carried out to investigate the chamber wall effect. As a result, temperature errors caused by chamber wall effect was calculated, and the temperature data acquired in the thermal balance test have been compensated. By defining the optimized area ratio between chamber surface and satellite surface area, the baseline to be able to determine the minimum size of thermal vacuum chamber was established to minimize the wall effect. Also, theoretical analysis about transparent material coating which can reduce the chamber wall effect is conducted.

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.230-235
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very law temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual unit were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

  • PDF

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (지구 정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.59-65
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very low temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual units were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

Thermal Modeling of Quasi-Adiabatic Room and Lighting Fixture for Estimation of Internal Heat Gain by Luminaires (조명기구를 통한 내부획득열 추정을 위한 고단열실 및 조명기구의 열적 모델링)

  • Park, He-Rie;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.1-12
    • /
    • 2012
  • In order to reduce energy consumption and greenhouse gas emission in building domain, thermal insulation of building is being enhanced. In a well insulated and tightened environment, internal heat gain caused by solar radiation, luminaires, electronic appliances and metabolism can be more important to thermal condition of building. This paper presents mathematical/physical models of quasi-adiabtic room and lighting fixtures using heat balance equation and thermal-electric analogy to quantify and modelize the heat gain due to luminaires. Experimental results are used to identify thermal parameters of theoretical models. And simulation results of models using Matlab/Simulink are conducted to verify the models and to investigate the thermal effect of lighting fixtures into quasi-adiabatic room.

Turbine Cycle Thermal Performance Analysis of Advanced Power Reactor 1400 (신형경수로(APR1400)의 터빈 싸이클 열성능 분석)

  • Jeong, Dae-Yul;Lim, Hyuk-Soon;Jeong, Dae-Wok;Heo, Gyun-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.343-347
    • /
    • 2001
  • Advanced Pressurized Reactor 1400(APR-1400), which is a standard evolutionary advanced light water reactor(ALWR), has been developed from 1992 as one of long-term Government Project(G-7). The APR-1400 is designed to operate at the rated output of 4000MWt to produce an electric power output of around 1450MWe. The balance of plant (BOP) for the secondary system consists of main steam, feedwater, condensate, turbine generator and auxiliary system. In this paper, we describe the major design features of secondary component, balance of plant configuration, and then the turbine cycle thermal performance evaluation using PEPSE code.

  • PDF

Thermal Performance Simulation of Cogeneration Power Plants (열병합 발전플랜트의 열성능 해석)

  • Lee, Dong-Won;O, Myeong-Do;Lee, Jae-Heon;Jo, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.451-460
    • /
    • 2001
  • An analysis program for the thermal performance prediction of steam turbine cogeneration systems with multi-extraction, reheat and regeneration has been developed on the basis of the thermodynamic heat balance method. Heat balance analyses were performed for a commercial cogeneration power plant using the program. Its appropriateness was verified by comparing its heat balance results with those of other commercial programs and those provided by the original system designer. Further parametric analyses were carried out and performance improvement measures in designing the plant were suggested.