• 제목/요약/키워드: thermal asperity

검색결과 16건 처리시간 0.018초

부식작용으로 인하여 디스크면으로 이동된 코발트가 Thermal Asperity 현상에 미치는 영향 (The Study of Corrosion Induced Co migration and Its Effect on Thermal Asperity Phenomenon)

  • 좌성훈
    • Tribology and Lubricants
    • /
    • 제15권4호
    • /
    • pp.335-342
    • /
    • 1999
  • Corrosion of the disk has been an ongoing concern for the manufacturers of hard disk drives. With the advent of magnetoresistive (MR) head, very low levels of corrosion and contamination become more critical since the raised defects and corrosion products on the disk surface-anything that heats the MR sensor due to the contact-can distort the output signal of the head. This phenomenon is called as thermal asperity. In this paper, the effect of corrosion as a form of Co migration on the occurrence of thermal asperity in MR drives was investigated. The corrosion test at high temperature (60$^{\circ}C$) and high relative humidity (80%) was emphasized in this study and the testing results at ambient condition were compared. The corrosion on the disks was characterized as the amount of Co ion migration using an ion chromatography (IC) and a time-of-flight secondary ion mass spectroscopy (TOF-SIMS). It is proved that corrosion on the disk surface after storage testing is closely correlated to the amount of Co ions migration from the magnetic layer to disk surfaces and higher Co migration causes more thermal asperities in the drive. In order to reduce Co migration, several methods such as burnishing process and structure of the carbon overcoat were investigated. It is found that the hydrogenated carbon overcoat shows the least Co migration among different types of overcoat layer. However, the most effective way to reduce Co migration is the application of Cr layer between the overcoat and the magnetic alloy layer.

The Effects of Slider Design on Thermal Asperity Rejection Capability

  • Choa, Sung-Hoon;Vinod Sharma;Kim, Seong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.281-290
    • /
    • 2001
  • Particle contamination has been an ongoing problem affecting the reliability of the magnetic hard disk drives. Especially the recent use of MR head requires much tighter control of particle contamination due to thermal asperity (TA) phenomenon. In this study, the effects of slider air bearing surface design of TA reduction capability were investigated by manufacturing two types of sliders. Numerical methods were used to simulate the motion of particles in the head/media interface. Experiments were conducted to verify the results predicted by the numerical simulation. Drives were built and exposed to particle contamination using a particle injection chamber, which turned out to be a very simple and reliable particle generation method over conventional aerosol technique. Then the number of TA generated in the drives was recorded and compared. Also the contacts between slider and particles were investigated by acoustic emission study. It was found that a new ABS design, which has aerodynamic U-shaped rail and central flow passage, was beneficial in reducing the particle contamination on the slider.

  • PDF

미세 입자에 의한 thermal asperity의 민감도 해석 및 감소 방안 (Sensitivity and Rejection Capability of Thermal Asperity Induced by Sub-Micron Contamination Particles)

  • 좌성훈
    • 한국자기학회지
    • /
    • 제10권6호
    • /
    • pp.310-317
    • /
    • 2000
  • 먼지 입자에 의한 thermal asperity(TA)써 발생은 드라이브의 신뢰성에 큰 영향을 미친다. 본 논문에서는 드라이브의 입자 분사 시험 등을 통하여 헤드 및 디스크의 TA민감도를 분석하고 TA발생의 중요 인자들을 고찰하였다. 헤드의 TA 민감도는 MR 및 GMR 센서의 재질 및 특성에 많은 영향을 받으며 특히 바이어스 전류가 증가함에 띠라 TA 민감도는 증가한다. 한편 슬라이더의 ABS 형태를 적절히 설계 함으로서 TA를 어느 정도 감소시킬 수 있다. 디스크의 경우 디스크 카본 overcoat층의 scratch저항력을 증가시킴으로써 TA의 발생을 감소시킬 수 있다. 그러나 먼지 입자가 디스크 표면에 부착되는 정도를 결정하는 표면에너지는 TA 발생에 거의 영향을 미치지 않는다. 이는 TA 발생을 초래하는 먼지 입자의 크기가 1-2 $\mu\textrm{m}$로서 디스크 표면의 윤활막에 의한 모세관력이 너무 커서 입자들이 디스크표면으로부터 이탈할 수 없기 때문이다

  • PDF

마찰식 브레이크의 미세 접촉면에 발생된 적열점 현상의 수치적 연구 (Numerical Study of Miro-Contact Surface Induced Hot Spots in Friction Brakes)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • 제19권5호
    • /
    • pp.268-273
    • /
    • 2003
  • This paper presents hot spot behaviors on the rubbing surface of disk-pad type brake by using coupled thermal-mechanical analysis technique. The height of micro-asperity on the rubbing surface is usually 2∼3 ${\mu}$m in practical disk brakes. Non-uniform micro-contacts between the disk and the rigid friction pads lead to high local temperature distributions, which may cause the material degradation, and develop hot spots, thermal cracks, and brake system failure at the end for a braking period. The friction temperatures on the rubbing surface of disk brakes in which are strongly related to the hot spot and thermal related wears are rapidly concentrated on the micro-contact asperities during braking. The computed FEM results show that the contact stress, friction induced temperature and thermal strain are highly concentrated on the rubbing micro-contact asperities even though the braking speed and force are small during the braking period. This hot spot may directly produce the slippage and various thermal wears on the brake-rubbing surface.

기계평면시일의 열응력 크랙에 관한 실험적 연구 (Experimental Investigation of Thermal Stress Cracks in Mechanical Face Seals)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.79-84
    • /
    • 1996
  • One of the greatest dangers in mechanical face seals is the formation of heat checking and thermal stress cracks on the sliding surfaces. These thermal distortions due to non-uniform heating lead to increase the leakage of the sealed fluids and wear, and with balance of the seal can cause the seal faces to part. In this study heat checking and thermal stress cracks are investigated experimentally. These thermal distortions are explained using the thermal models of the conatct geometries between the seal ring and the seal seat. To overcome these thermal problems, the thermohydrodynamic seal is presented. The newly developed mechanical seal may substantially reduce the friction torque, frictional heating which causes heat checking and thermal stress cracks, and wear.

열차폐 코팅의 TGO 성장과 형상비에 따른 TC-BC-TGO 계면에서의 잔류응력 변화에 대한 유한요소해석 (Numerical Simulation of Effects of TGO Growth and Asperity Ratio on Residual Stress Distributions in TC-BC-TGO Interface Region for Thermal Barrier Coatings)

  • 장중철;최성철
    • 한국세라믹학회지
    • /
    • 제43권7호
    • /
    • pp.415-420
    • /
    • 2006
  • The residual stresses in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloy samples using a Finite Element Method (FEM). It was found that the stress distribution of the interface boundary was dependent upon mainly the geometrical shape or its aspect ratio and the thickness of TGO layer, which was formed by growth and swelling behavior of oxide layer. Maximum compressive residual stress in the TBC/TGO interface is higher than that of the TGO/bond coat interface, and the tensile stress had nothing to do with change of an aspect ratio. The compressive residual stresses in the TBC/TGO and TGO/bond coat interface region increased gradually with the TGO growth.

An Analysis on Surface Cracking Due to Thermomechanical Loading

  • Kim, S.S.;Lee, K.H.;Lee, S.M.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.172-176
    • /
    • 1995
  • This study deals with thermomechanical cracking between the friction surface and the interior of the brake disc. Analytical model considered in this study was a semi-infinite solid subjected to the thermal loading of an asperity moving with a high speed. The temperature field and the thermal stress state were obtained and discussed on the basis of Von Mises and Tresca Yielding Criterion. Analytical results showed that the dominant stress in cracking of friction brake is thermal stress and cracking location is dependent on the friction coefficient of contact and Peclet number. On the basis of analytical results thermomechanical cracking model is proposed.

박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구 (Friction Power Loss Reduction for a Marine Diesel Engine Piston)

  • 안성찬;이상돈;손정호;조용주
    • Tribology and Lubricants
    • /
    • 제32권4호
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Computer Modeling of Hot Spot Phenomena in Ventilated Disk Brake Rubbing Surface

  • Kim, Chung-Kyun;Cho, Seung-Hyun;Ko, Young-Bae
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.229-230
    • /
    • 2002
  • This paper presents the hot spot behaviors on the rubbing surface of ventilated disk brake by using finite element method. The depth of asperities on the rubbing surface is usually $2-3\;{\mu}m$ so the real contact area is microscopically. Non-uniform contacts between the disk and the pads lead to high local temperatures, which may cause the material degradation, and develops hot spots, thermal cracking, and brake system failures at the end. High contact asperity flash temperatures in rubbing systems, which is strongly related to the hot spot. It was generally known that high temperature over about $700^{\circ}C$ may form martensite on the cast iron which is material for automotive disk brakes. In this paper, the contact stress, temperature distribution and strain have been presented for the specific asperities of real contact area microscopically by using coupled thermal-mechanical analysis technique.

  • PDF

HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향 (Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • 제16권6호
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.