• 제목/요약/키워드: thermal analysis

검색결과 10,448건 처리시간 0.047초

통신해양기상위성 해양탑재체 정지궤도 예비 열해석 (PRELIMINARY ON-ORBIT THERMAL ANALYSIS FOR THE GEOSTATIONARY OCEAN COLOR IMAGER OF COMS)

  • 김정훈;전형열;한조영
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.24-30
    • /
    • 2010
  • A preliminary thermal analysis is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative and conductive thermal models are employed in order to predict thermal responses of the GOCI on the geostationary orbit. The results of this analysis are as follows: 1) the GOCI instrument thermal control is satisfactory to provide the temperatures for the GOCI performances, 2) the thermal control is defined and interfaces are validated, and 3) the entrance baffle temperature and shutter wheel motor gradient are found slightly out their specification, therefore further detailed analyses should be continued on these elements.

수치계산에 의한 열전사 프린팅헤드의 열해석 (Thermal Analysis of Thermal Printing Head by Numerical Method)

  • 조창주;정우남
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.50-55
    • /
    • 1998
  • A thermal printing head is used for heat transcription printing of facsimile or printer. The thermal printing head has multilayered thin films and heaters lined up. Thermal analysis of thermal printing head is important for a design of thermal printing head. Since the heating charateristics of thermal printing head is dependent on the thermal conductivities of multilayerd material, this study made numerical analysis for three dimensional transient heat conduction in mutilayered films by the finite difference method and investigated the effect of various thermal conductivities of thin films. The results of this study will be used to design thermal printing head and select the materials for thermal printing head.

  • PDF

연속주조 몰드의 열해석 (Thermal Analysis of Continuous Casting Mold)

  • 이종선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.77-83
    • /
    • 1998
  • This study is object to thermal analysis of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting mold. For thermal analysis using analysis result from FEM code. In other to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition re considered.

  • PDF

니켈도금된 연속주조 몰드의 열해석 (Thermal Analysis of Continuous Casting Nickel-Coated Mold)

  • 원종진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.287-292
    • /
    • 1999
  • This study is object to thermal analysis of continuous casting nickel-coated mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting nickel-coated mold. For thermal analysis using analysis result from FEM code. In other to thermal analysis of continuous casting nickel-coated mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

연속주조 몰드의 열해석 (Thermal Analysis of Continuous Casting Mold)

  • 조동현
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.43-49
    • /
    • 1999
  • This study is object to thermal analysis of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting mold. For thermal analysis using analysis result from FEM code. In order to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

연속주조 몰드의 열해석 비교 (Thermal Analysis Comparison of Continuous Casting Mold)

  • 원종진;이종선;윤희중;이현곤
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.200-205
    • /
    • 2000
  • This study is object to thermal analysis comparison of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution for continuous casting mold. For thermal analysis using analysis result from ANSYS. In other to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

모터싸이클 브레이크 디스크의 열 해석에 관한 연구 (A Study on Thermal Analysis of Motorcycle Brake Disk)

  • 류미라;김영희;변상민;박흥식
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.34-40
    • /
    • 2009
  • The effect of frictional factors on thermal stress and deformation volume of motorcycle brake disk was studied by using a disk-on-pad type friction tester. It has an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors. In this study, thermal stress and deformation volume by using design of experiment with 4 elements were investigated for thermal analysis with regression analysis. Thermal stress and thermal deformation are obtained by the application of temperature from mechanical test. From this study, the result showed that the motorcycle brake disk with ventilated hole 3 had the most excellent thermal stress and deformation volume. The regression equation had a trust rate of 95% for the prediction of thermal stress and deformation volume of motorcycle brake disk was composed.

  • PDF

전도성 접착제의 열경화 응력에 대한 해석 (Thermal Ratchetting of the Conductive Adhesives Joints Subjected to the Thermal Cycles)

  • 박주혁;서승호
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.208-213
    • /
    • 2002
  • When a thermoset conductive adhesive joints are subjected to the thermal cycles, the thermal stresses are developed around the joints. Most of in-plane, hi-axial components of these residual stresses induces large tensile peel stresses and weakens adhesive joints. Also these stresses vary with thermal cycles, and result in thermal fatigue loading and debonding propagation. In this study, the thermal ratchetting effect in conductive adhesive joints are evaluated by the finite element analysis with the viscoelastic material model. In order to Investigate the relationship between thermal ratchetting and glass transition temperature, the mathematical material model has been developed experimentally by dynamic mechanical analysis. These material models are implemented to the finite element analysis with thermal loading cycles. And the stress profiles around the conductive adhesive joints are calculated. It has been observed that the thermal ratchetting occurs when the maximum temperature of thermal cycles is above the glass transition temperature. The peel and shear stress components increase as the thermal loading time increases. This will contributes to thermal fatigue fracture of the joints.

  • PDF

세라믹스 재료의 열분석 (Thermal Analysis of Ceramic Materials)

  • 차재민;류리위;류봉기
    • 세라미스트
    • /
    • 제22권4호
    • /
    • pp.393-401
    • /
    • 2019
  • Thermal analysis means the analysis of a change in a property of a sample, which is related to an imposed temperature alteration. Measurements are usually made with increasing temperature, but isothermal measurements or measurements made with decreasing temperatures are also possible. In fact, any measuring technique can be made into a thermal analysis technique by adding thermal control. Simultaneous use of multiple techniques increases the power of thermal analysis, and modern instrumentation has permitted extensive growth of application. The basic theories of thermal analysis are well developed and some of them are explained in this paper.

위성 PCB 열해석을 위한 고 전력소산 소자의 모델링 연구 (A Study of High-Power Dissipation Parts Modeling for Spacecraft PCB Thermal Analysis)

  • 이미현;장영근;김동운
    • 한국항공우주학회지
    • /
    • 제34권6호
    • /
    • pp.42-50
    • /
    • 2006
  • 본 논문에서는 위성의 전장보드 열해석을 위한 최적의 열모델링 방법을 제안하였다. 플레이트 모델링 방법을 통한 보드 모델링에 고전력 소산 소자의 외부 및 내부 구조를 직접 모델링하는 방법을 새롭게 제안하였다. 이러한 모델링 방법을 다른 모델링과 비교 분석하여 효율성을 검토하였고 열진공 시험을 통해 검증하였다. 제시한 소자 모델링 방법으로 HAUSAT-2의 발열이 큰 통신보드의 열해석을 수행한 결과, 노드 네트워크 모델링 방법과 플레이트 모델링 방법의 단점을 모두 보완할 수 있었다. 또한, 소자 모델링 방법은 열적인 문제에 따른 소자 수준의 해결방안을 모색 후, 그에 따른 열해석을 수행하여 효과를 예측할 수 있으므로 열제어계 설계에도 효율적이다.