• Title/Summary/Keyword: thermal FEM simulation

Search Result 127, Processing Time 0.029 seconds

Analysis of Laser Heat Distribution in Al-Cu Welding (알루미늄 구리 용접에서 레이저 열원 분포 분석)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • A computer simulation was performed to study the effectiveness of temperature on the type of laser heat source in the context of the heterogeneous welding of aluminum and copper materials. Three different types of heat sources were used in the computer simulation: 1) Single Beam Straight Scan, 2) Single Beam Wobble Scan, and 3) Dual Beam Straight Scan. Among these sources, dual beam straight scan was found to be the most effective from the viewpoint of heat source control. Because the difference between the melting temperatures of copper and aluminum is approximately 400℃, a clear separation of heating temperature was required, and the dual beam straight scan provided superior controllability in this regard. When using the dual beam, the temperature of the 90:10 split was considerably easier to control than that of the 50:50 split. The optimal offset was calculated to be 4 mm off to the copper side, where the melting temperature and thermal conductivity were higher. In this manner, computer simulation was effectively used for determining the optimal laser beam hear source control without performing an actual laser welding experiment.

Stochastic thermo-mechanically induced post buckling response of elastically supported nanotube-reinforced composite beam

  • Chaudhari, Virendra Kumar;Shegokar, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.585-611
    • /
    • 2017
  • This article covenants with the post buckling witticism of carbon nanotube reinforced composite (CNTRC) beam supported with an elastic foundation in thermal atmospheres with arbitrary assumed random system properties. The arbitrary assumed random system properties are be modeled as uncorrelated Gaussian random input variables. Unvaryingly distributed (UD) and functionally graded (FG) distributions of the carbon nanotube are deliberated. The material belongings of CNTRC beam are presumed to be graded in the beam depth way and appraised through a micromechanical exemplary. The basic equations of a CNTRC beam are imitative constructed on a higher order shear deformation beam (HSDT) theory with von-Karman type nonlinearity. The beam is supported by two parameters Pasternak elastic foundation with Winkler cubic nonlinearity. The thermal dominance is involved in the material properties of CNTRC beam is foreseen to be temperature dependent (TD). The first and second order perturbation method (SOPT) and Monte Carlo sampling (MCS) by way of CO nonlinear finite element method (FEM) through direct iterative way are offered to observe the mean, coefficient of variation (COV) and probability distribution function (PDF) of critical post buckling load. Archetypal outcomes are presented for the volume fraction of CNTRC, slenderness ratios, boundary conditions, underpinning parameters, amplitude ratios, temperature reliant and sovereign random material properties with arbitrary system properties. The present defined tactic is corroborated with the results available in the literature and by employing MCS.

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

Structural Reliability Analysis of Subsea Tree Tubing Hanger (Sub-sea 트리 튜빙 행어(tubing hanger)의 구조 신뢰성 해석)

  • Kim, Hyunjin;Yang, Youngsoon;Kim, Sunghee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.212-219
    • /
    • 2014
  • As subsea production has been revived up, the demand of subsea equipment has also been increased. Among the equipment, subsea tree plays a major role in safety. The tubing hanger is one of the most important components in subsea tree. In this study structural reliability analysis on dual bore tubing hanger of subsea tree is performed. The target reliability which is introduced in ISO regulation is used for judging whether tubing hanger is safe or not. The considered loads are working pressure, working temperature and suspended tubing weight. Thermal-stress analysis on tubing hanger is performed and kriging model is created based on the results of FEM analysis. According to von Mises criterion, limit state equation can be estimated. Reliability analysis is performed by using level 2 method and the result is verified by that of Monte Carlo Simulation. For finding most probable failure point, enhanced HL-RF method is adopted. Because the reliability of model doesn't reach target reliability, an improvement measure should be considered. Thus, it is suggested to change the material of tubing hanger main body to AISI 4140.

A Round-Robin Analysis of Temperature and Residual Stresses in Dissimilar Metal Weld (이종금속용접부 온도 및 잔류응력의 라운드로빈 해석)

  • Song, Min-Sup;Kang, Sun-Ye;Park, June-Soo;Sohn, Gap-Heon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.85-87
    • /
    • 2008
  • DMWs are common feature of the PWR in the welded connections between carbon steel and stainless steel piping. The nickel-based weld metal, Alloy 82/182, is used for welding the dissimilar metals and is known to be susceptible to PWSCC. A round-robin program has been implemented to benchmark the numerical simulation of the transient temperature and weld residual stresses in the DMWs. To solve the round-robin problem related to Pressurizer Safety & Relief nozzle, the thermal elasto-plastic analysis is performed in the DMW by using the FEM. The welding includes both the DMW of the nozzle to safe-end and the SMW of the safe-end and piping. Major results of the analyses are discussed: The axial and circumferential residual stresses are found to be -88MPa(225MPa) and -38MPa(293MPa) on the inner surface of the DMW; where the values in parenthesis are the residual stresses after the DMW. Thermo-mechanical interaction by the SMW has a significant effect on the residual stress fields in the DMW.

  • PDF

The Reliability of Optical Fiber Assembly Using Glass Solder

  • Lee, Jong-Jing;Kang, Hyun-Seo;Koh, Jai-Sang
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.147-151
    • /
    • 2004
  • In this study, an optical fiber assembly directly coupled with a laser diode or a photo diode is designed to confirm high reliable optical coupling efficiency of optical transmitter(Tx) and receiver(Rx). The optical fiber assembly is fabricated by soldering an optical fiber and a Kovar ferrule using a glass solder after inserting an optical fiber through a Kovar ferrule. The Kovar which has good welding characteristics is applied to introduce laser welding technique. The glass solder has excellent thermal characteristics such as thermal shift delamination compared with PbSn, AuSn solder previously used usually. Furthermore, the glass solder doesn't need fiber metalization and this enables low cost fabrication. However, the glass soldering is high temperature process over 35$0^{\circ}C$ and the convex shape after solidification due to surface tension causes the stress concentration on optical fiber. The stress concentration on the optical fiber increases the optical insertion loss and possibility of crack formation. The shape of glass solder was designed referring to 2-D Axi-symmetric FEM simulation. To test the mechanical reliability, mechanical vibration test and shock test were done according to Telcorida GR-468-Core protocol. After each test, the optical loss of the stress distributed fiber assembly didn't exceed 0.5 dB, which passes the test.

  • PDF

Development of Motorcycle Brake Design Aided Program for Thermal Analysis (모터사이클 브레이크의 열변형 해석을 위한 지원 프로그램의 개발)

  • 박시형;강석현;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.134-139
    • /
    • 2002
  • Motorcycle industry, for its competitive position, depends on part design technology. This part design has a bulky amount of data and asks the accumulation of advanced technical skill and experience, and fragmentary technical application is not enough to get to the kernel of a problem. Therefore, the improvement of proper productivity - the starting point of engineering design - and useful Design Methodology for products manufacturing are needed. Thus this paper is aimed to create a program that outputs dynamic characteristics of a vehicle when the data from fully understanding on motorcycle's brake system and induced formula for brake design are inputted.

  • PDF

Die Design of Hot Extrusion for Hexagonal Insert (Hexagonal 인서트용 열간압출 금형설계)

  • 권혁홍;이정로
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • The use of hexagonal ceramic inserts for copper extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper the data on the loading of the tools is determined from a commercial FEM package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads.

Design of Hot Extrusion Dies for Hexagonal Insert (Hexagonal 인서트용 열간압출 금형설계)

  • 권혁홍;이정로
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.72-77
    • /
    • 2001
  • The use of hexagonal ceramic inserts for copper extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper the data on the loading of the tools is determined from a commercial FEM package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the design, and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads.

  • PDF

A Study on Sink Mark of Injection Molded Products (사출성형부품의 싱크마크에 관한 연구)

  • 서윤수;김영호;임동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.811-814
    • /
    • 1997
  • The injection molding process has been developed as a very important technology for the automotive and electric industries in recent years. But, in the injection molding products with rib-web structures, partial deformation by thermal volumetric shrinkage called Sink Mark, is occurred. In this study, to make explicitly characteristics of sink mechanism, an experimental approach was taken by using multi T-shaped mold cavity and FEM simulation. As a result, pressure on the packing process and the rib thickness are the most effective on sink mark depth. On the other hand, melt temperature has no effect on sink mark depth fot the same rib thickness.

  • PDF