• Title/Summary/Keyword: therapeutic target

Search Result 964, Processing Time 0.03 seconds

Estrogen-related receptor γ is a novel catabolic regulator of osteoarthritis pathogenesis

  • Son, Young-Ok;Chun, Jang-Soo
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.165-166
    • /
    • 2018
  • Osteoarthritis (OA) is the most common form of arthritis and is a leading cause of disability with a large socioeconomic cost. OA is a whole-joint disease characterized by cartilage destruction, synovial inflammation, osteophyte formation, and subchondral bone sclerosis. To date, however, no effective disease-modifying therapies for OA have been developed. The estrogen-related receptors (ERRs), a family of orphan nuclear receptor transcription factors, are composed of $ERR{\alpha}$, $ERR{\beta}$, and $ERR{\gamma}$, which play diverse biological functions such as cellular energy metabolism. However, the role of ERRs in OA pathogenesis has not been studied yet. Among the ERR family members, $ERR{\gamma}$ is markedly upregulated in human and various models of mouse OA cartilage. Adenovirus-mediated overexpression of $ERR{\gamma}$ in the mouse knee joint tissue caused OA pathogenesis. Additionally, cartilage-specific $ERR{\gamma}$ transgenic (Tg) mice exhibited enhanced experimental OA. Consistently, $ERR{\gamma}$ in articular chondrocytes directly caused expression of matrix metalloproteinase (MMP) 3 and MMP13, which play a crucial role in cartilage destruction. In contrast, genetic ablation of Esrrg or shRNA-mediated Esrrg silencing in the joint tissues abrogated experimental OA in mice. These results collectively indicated that $ERR{\gamma}$ is a novel catabolic regulator of OA pathogenesis and can be used as a therapeutic target for OA.

GPx7 ameliorates non-alcoholic steatohepatitis by regulating oxidative stress

  • Kim, Hyeon Ju;Lee, Yoseob;Fang, Sungsoon;Kim, Won;Kim, Hyo Jung;Kim, Jae-woo
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.317-322
    • /
    • 2020
  • Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. NAFLD can further progress to irreversible liver failure such as non-alcoholic steatohepatitis (NASH) fibrosis and cirrhosis. However, specific regulator of NASH-fibrosis has yet to be established. Here, we found that glutathione peroxidase 7 (GPx7) was markedly expressed in NASH fibrosis. Although GPx7 is an antioxidant enzyme protecting other organs, whether GPx7 plays a role in NASH fibrosis has yet to be studied. We found that knockdown of GPx7 in transforming growth factor-β (TGF-β) and free fatty acids (FFA)-treated LX-2 cells elevated the expression of pro-fibrotic and pro-inflammatory genes and collagen synthesis. Consistently, GPx7 overexpression in LX-2 cells led to the suppression of ROS production and reduced the expression of pro-fibrotic and pro-inflammatory genes. Further, NASH fibrosis induced by choline-deficient amino acid defined, high fat diet (CDAHFD) feeding was significantly accelerated by knockdown of GPx7, as evidenced by up-regulated liver fibrosis and inflammation compared with CDAHFD control mice. Collectively, these results suggest that GPx7 might be a novel therapeutic target to prevent the progression and development of NAFLD.

Glucose Transporters and AMP-Activated Protein Kinase Modulation Effects of Decursin and Decursinol Angelate on Diabetic Rats (당뇨유발 흰쥐에서 당수송 인자와 AMP-Activated Protein Kinase의 조절에 대한 데커신과 데커시놀 안젤레이트의 효과)

  • Ok, Seon;Lee, Ju-Hee;Kim, Ik-Hwan;Kang, Jae-Seon
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.301-308
    • /
    • 2011
  • Diabetes has been one of major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has been focused as a novel therapeutic target for the treatment of metabolic syndromes, because AMPK increases glucose uptake through independent insulin signal pathway. In this study, we investigated the anti-diabetic effect of Angelica gigas Nakai extract (AGNEX), a mixture of decursin and decursinol angelate (53 : 47), decursin and decursinol angelate on blood glucose, glucose transport (GLUT) and AMPK expression levels in streptozotocin (STZ)-induced diabetic rats. To induce diabetes, 50 mg/kg of STZ was injected via i.v. route and AGNEX 2 mg/kg (STZ+AG), decursin 2 mg/kg (STZ+D), decursinol angelate 2 mg/kg (STZ+DA), and metformin 100 mg/kg (STZ+M) were administered orally for 21 days. STZ+DA group showed a significant decrease in fasting blood glucose levels compared to the other groups. Decursinol angelate significantly upregulated expression of glucose transporter 4 (GLUT4) and phosphorylation of AMPK (p-AMPK) in skeletal muscle of rats. In pancreas of rats, decursinol angelate significantly increased expression of GLUT2 through down-regulation of p-AMPK. In addition to the result of pancreatic islets morphology, AGNEX, decursin, decursinol angelate, and metformin treated group recovered ${\beta}$-cell damage by hyperglycemia. These results indicate that decursinol angelate might be a potential anti-diabetic agent and AGNEX could be useful in the treatment of diabetes mellitus.

Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma

  • Song, Heewon;Lee, Young Joo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.240-246
    • /
    • 2017
  • Background: Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods: The effects of the KRG on inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion: We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of $PPAR{\gamma}$ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. $PPAR{\gamma}$ protein levels and $PPAR{\gamma}$-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the $PPAR{\gamma}$ inhibitor GW9662. In addition, the inhibition of $PPAR{\gamma}$ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion: Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on $PPAR{\gamma}$ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly $PPAR{\gamma}$ and to identify the constituents responsible for this activity.

Extract of Balloon-flower Inhibited In Vitro Angiogenesis in Human Umbilical Vein Endothelial Cells (도라지 추출물에 의한 인간 제대 정맥 내피 세포의 in vitro 혈관신생 억제)

  • Yi, Eui-Yeun;Kim, Yung-Jin
    • Journal of Life Science
    • /
    • v.27 no.9
    • /
    • pp.1059-1063
    • /
    • 2017
  • Angiogenesis is an essential step in tumoral growth and metastasis and is regulated by a balance between stimulators and inhibitors. Recently, antiangiogenic target therapy has shown promise as a new type of chemotherapy. Natural products have attracted widespread attention worldwide as a useful source of novel therapeutic compounds. The balloon-flower has long been used as a traditional medicinal material and food in Asia. In this study, we investigated whether extract of balloon-flower would inhibit in vitro angiogenesis and vascular-like network formation in human umbilical vein endothelial cells (HUVECs). The extract of Balloon-flower did not affect the viability of HUVECs. However, treatment with the Balloon-flower extract suppressed tube formation of HUVECs. In addition, after treatment with the Balloon-flower extract, cell migration decreased about 80%, and cell invasion was almost completely inhibited. Taken together, these results suggest that extract of Balloon-flower may have potential as an angiogenic inhibitor and that it could be developed as an anticancer agent.

A Role of Central NELL2 in the Regulation of Feeding Behavior in Rats

  • Jeong, Jin Kwon;Kim, Jae Geun;Kim, Han Rae;Lee, Tae Hwan;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.186-194
    • /
    • 2017
  • A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an immunohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.

5-Hydroxytryptamine 6 Receptor (5-HT6R)-Mediated Morphological Changes via RhoA-Dependent Pathways

  • Rahman, Md. Ataur;Kim, Hanna;Lee, Kang Ho;Yun, Hyung-Mun;Hong, Jung-Hwa;Kim, Youngjae;Choo, Hyunah;Park, Mikyoung;Rhim, Hyewhon
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.495-502
    • /
    • 2017
  • The $5-HT_6R$ has been considered as an attractive therapeutic target in the brain due to its exclusive expression in the brain. However, the mechanistic linkage between $5-HT_6Rs$ and brain functions remains poorly understood. Here, we examined the effects of $5-HT_6R$-mediated cell morphological changes using immunocytochemistry, Western blot, and live-cell imaging assays. Our results showed that the activation of $5-HT_6Rs$ caused morphological changes and increased cell surface area in HEK293 cells expressing $5-HT_6Rs$. Treatment with 5-HT specifically increased RhoA-GTP activity without affecting other Rho family proteins, such as Rac1 and Cdc42. Furthermore, live-cell imaging in hippocampal neurons revealed that activation of $5-HT_6Rs$ using a selective agonist, ST1936, increased the density and size of dendritic protrusions along with the activation of RhoA-GTP activity and that both effects were blocked by pretreatment with a selective $5-HT_6R$ antagonist, SB258585. Taken together, our results show that $5-HT_6R$ plays an important role in the regulation of cell morphology via a RhoA-dependent pathway in mammalian cell lines and primary neurons.

Implications of Circadian Rhythm in Dopamine and Mood Regulation

  • Kim, Jeongah;Jang, Sangwon;Choe, Han Kyoung;Chung, Sooyoung;Son, Gi Hoon;Kim, Kyungjin
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.450-456
    • /
    • 2017
  • Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-$erb{\alpha}$ induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway

  • Xu, Lijun;Zheng, Lili;Wang, Zhifang;Li, Chong;Li, Shan;Xia, Xuedi;Zhang, Pengyan;Li, Li;Zhang, Lixia
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.575-581
    • /
    • 2018
  • Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, $TNF-{\alpha}$ notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of $TNF-{\alpha}$ on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that $TNF-{\alpha}$-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.

Silencing of Mutant p53 Leads to Suppression of Human Breast Xenograft Tumor Growth in vivo (돌연변이 p53 단백질의 Silencing에 의한 사람유방암세포의 in vivo 항 종양 효과)

  • Park, Won Ick;Park, Se-Ra;Park, Hyun-Joo;Bae, Yun-Hee;Ryu, Hyun Su;Jang, Hye-Ock;Bae, Moon-Kyoung;Bae, Soo-Kyung
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • Mutant p53 (R280K) is highly expressed in MDA-MB-231 triple-negative human breast cancer cells. Currently, we reported the role of mutant p53-R280K in mediating the survival of MDA-MB-231 cells in vitro. The present study was undertaken to determine whether mutant p53-R280K affects breast cancer cell growth in vivo. To this end, we used small interfering RNA to knockdown the level of mutant p53-R280K in MDA-MB-231 cells. Silencing of mutant p53-R280K in MDA-MB-231 cells causes substantial tumor regression of established xenografts in vivo. In xenograft model for breast cancer, silencing of mutant p53-R280K in MDA-MB-231 cells significantly inhibited the tumor growth. Moreover, TUNEL assay showed more occurrence of apoptotic cells in mutant p53-R280K silenced tumors compared to control. Our data indicate that mutant p53-R280K has an important role in mediating tumor growth of MDA-MB-231 cells in vivo. Taken together, this study suggests that endogenous mutant p53-R280K could be used as a therapeutic target for breast cancer cells harboring this TP53 missense mutation.