• Title/Summary/Keyword: therapeutic function

Search Result 1,122, Processing Time 0.036 seconds

Inhibitory effects of artemether on thrombus formation via regulation of cyclic nucleotides in collagen-induced platelets (콜라겐-유도의 혈소판에서 사이클릭 뉴클레오티드의 조절을 통한 Artemether의 항혈전 효과)

  • Chang-Eun Park;Dong-Ha Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.239-245
    • /
    • 2022
  • Although normal activation of platelets is important in the process of hemostasis, excessive or abnormal activation of platelets can lead to cardiovascular diseases. Therefore, the discovery of novel substances capable of regulating or inhibiting platelet activation may be helpful in the prevention and treatment of cardiovascular diseases. Artemether is a derivative of artemisinin, known as an active ingredient of Artemisia annua, which has been reported to be effective in treating malaria, and is known to function through antioxidant and metabolic enzyme inhibition. However, the role of artemether in platelet activation and aggregation and the mechanism of action of artemether in collagen-induced human platelets are not known until now. This study investigated the effects of artemether on platelet activation and thrombus formation induced by collagen. As a result, cAMP level was significantly increased by artemether, and VASP and IP3R, substrates of cAMP-dependent kinase, were phosphorylated. IP3R phosphorylation by Artemether inhibited Ca2+ recruitment into the cytoplasm, and phosphorylated VASP inhibited fibrinogen binding by inactivating αIIb/β3 located on the platelet membrane. Consequently, artemether inhibited thrombin-induced fibrin clot formation. Therefore, we propose that artemether can act as an effective prophylactic and therapeutic agent for cardiovascular diseases caused by excessive platelet activation and thrombus formation.

Notoginseng leaf triterpenes ameliorates mitochondrial oxidative injury via the NAMPT-SIRT1/2/3 signaling pathways in cerebral ischemic model rats

  • Weijie, Xie;Ting, Zhu;Ping, Zhou;Huibo, Xu;Xiangbao, Meng;Tao, Ding;Fengwei, Nan;Guibo, Sun;Xiaobo, Sun
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.199-209
    • /
    • 2023
  • Background: Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia results in neuronal depolarization, insufficient NAD+, excessive levels of ROS, mitochondrial damages, and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy. Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection actions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy (TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo, treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury, alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated its related downstream SIRT1/2/3-MnSOD/PGC-1α pathways. Conclusion: The study finds that the mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1α signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and treating ischemic stroke.

4-F-PCP, a Novel PCP Analog Ameliorates the Depressive-Like Behavior of Chronic Social Defeat Stress Mice via NMDA Receptor Antagonism

  • Darlene Mae D., Ortiz;Mikyung, Kim;Hyun Jun, Lee;Chrislean Jun, Botanas;Raly James Perez, Custodio;Leandro, Val Sayson;Nicole, Bon Campomayor;Chaeyeon, Lee;Yong Sup, Lee;Jae Hoon, Cheong;Hee Jin, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.227-239
    • /
    • 2023
  • Major depressive disorder is a leading cause of disability in more than 280 million people worldwide. Monoamine-based antidepressants are currently used to treat depression, but delays in treatment effects and lack of responses are major reasons for the need to develop faster and more efficient antidepressants. Studies show that ketamine (KET), a PCP analog, produces antidepressant effects within a few hours of administration that lasts up to a week. However, the use of KET has raised concerns about side effects, as well as the risk of abuse. 4 -F-PCP analog is a novel PCP analog that is also an NMDA receptor antagonist, structurally similar to KET, and might potentially elicit similar antidepressant effects, however, there has been no study on this subject yet. Herein, we investigate whether 4-F-PCP displays antidepressant effects and explored their potential therapeutic mechanisms. 4-F-PCP at 3 and 10 mg/kg doses showed antidepressant-like effects and repeated treatments maintained its effects. Furthermore, treatment with 4-F-PCP rescued the decreased expression of proteins most likely involved in depression and synaptic plasticity. Changes in the excitatory amino acid transporters (EAAT2, EAAT3, EAAT4) were also seen following drug treatment. Lastly, we assessed the possible side effects of 4-F-PCP after long-term treatment (up to 21 days). Results show that 4-F-PCP at 3 mg/kg dose did not alter the cognitive function of mice. Overall, current findings provide significant implications for future research not only with PCP analogs but also on the next generation of different types of antidepressants.

Abnormal Behavior Controlled via GPR56 Expression in Microglia (미세아교세포에서 GPR56 발현에 의한 이상 행동)

  • Hyunju Kim
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.455-462
    • /
    • 2023
  • During pregnancy, maternal immune activation (MIA) from infection increases the risk of neurodevelopmental diseases, including schizophrenia and autism spectrum disorders. MIA induced by polyinosinic-polycytidylic acid (poly (I:C)) and lipopolysaccharide (LPS) in animal experiments has led to offspring with abnormal behaviors and brain development. In addition, it has recently been reported that microglia, which reside in the brain and function as immune cells, play an important role in behavioral abnormalities and brain development in MIA-induced offspring. However, the underlying mechanism remains unclear. In this study, we investigated whether microglia-specific inhibition of GPR56, a member of the G protein-coupled receptor (GPCR) family, causes behavioral abnormalities in brain development. First, MIA induction did not affect the microglia population, but when examining the expression of microglial GRP56 in MIA-induced fetuses, GPR56 expression was inhibited between embryonic days 14.5 (E14.5) and E18.5 regardless of sex. Furthermore, microglial GPR56-suppressed mice showed abnormal behaviors in the MIA-induced offspring, including sociability deficits, repetitive behavioral patterns, and increased anxiety levels. Although abnormal cortical development such as that in the MIA-induced offspring were not observed in the microglial GPR56-suppressed mice, their brain activity was observed through c-fos staining. These results suggest that microglia-specific GPR56 deficiency may cause abnormal behaviors and could be used as a biomarker for the diagnosis and/or as a therapeutic target of behavioral deficits in MIA offspring.

Effects of Galantamine Treatment on Attention, Activities of Daily Living, and Neuropsychiatric Symptoms between the Patients with Pure Alzheimer's Disease and Mixed Dementia (갈란타민(Galantamine) 투여 후 순수 알츠하이머병 치매와 혼합성 치매 환자의 주의력, 일상생활능력 및 신경정신행동 증상에 대한 효과 평가)

  • Kang, Hyo Shin;Yun, Ji Hae;Ahn, Inn Sook;Moon, Yu Jin;Hwang, Tae Young;Lee, Young Min;Kim, Hyeran;Kim, Doh Kwan
    • Journal of Korean geriatric psychiatry
    • /
    • v.16 no.1
    • /
    • pp.24-30
    • /
    • 2012
  • Objectives : The purpose of this study was to compare the efficacy of galantamine treatment, especially attention ability between patients with pure Alzheimer's disease (AD) and Mixed dementia (MD) during a 24-week trial. Methods : A total of 40 patients were recruited for this 24-week study. The effect of galantamine on attention was measured using Seoul Computerized NeuroCognitive Function Test (SCNT) and frontal functions test of Seoul Neuropsychological Screening Battery (SNSB). Patients'activities of daily living using the Seoul-Activities of Daily Living (S-ADL) and the Seoul-Instrumental Activities of Daily Living (S-IADL) ; behavioral symptoms using the Korean version Neuropsychiatric Inventory (K-NPI) were measured at baseline and 24-week. Results : 17 pure AD patients and 23 MD patients were analyzed in this study. Attention as measured by SCNT was not significantly different from baseline after 24 weeks of treatment in both groups. There was no significant difference between two groups in mean change from baseline in the SCNT, S-ADL, S-IADL and K-NPI scores at 24-week. Conclusion : Galantamine showed a therapeutic effect on cognition, activities of daily living, neuropsychiatric symptoms in pure AD and MD. Furthermore, Galantamine may specifically help to maintain attention and it may have positive effects on other cognitive and functional abilities.

Survey About Current Status of Pediatric and Adolescent Physical Therapy: Focus on Pediatric and Adolescent Rehabilitation Hospitals in Seoul and Gyeonggi Province (소아 청소년 물리치료 실태 조사: 서울 경기 지역 소아 청소년 재활병원을 중심으로)

  • Kim, Jeong-soo;Min, Kyoung-chul
    • Therapeutic Science for Rehabilitation
    • /
    • v.12 no.4
    • /
    • pp.67-80
    • /
    • 2023
  • Objective : This study aimed to investigate the current status of physical therapy in children and adolescents. Methods : Sixty questionnaires from physical therapists treating children and adolescents with disabilities were analyzed. The questionnaire consisted of questions on physical therapy, participants, satisfaction, and the assessment of pediatric and adolescent physical therapy. Descriptive statistics and frequencies were used to investigate the current status, participants, and satisfaction. Differences between physical therapy participation difficulty, importance-ability of major aspects of pediatric and adolescent physical therapy, and therapy goal frequency were analyzed using paired T-test. Results : 11 to 15 cases (66.7%) and one-on-one treatment (95.0%) were performed independently (95.0%). The main ages of the subjects were preschool and school, the diagnoses were brain lesions and developmental delay, and treatment was conducted for up to 20 years or older. Satisfaction with pediatric and adolescent physical therapy was high (70.0%), as was the intensity of work (71.7%). Neurodevelopmental therapy, gait training, and goal-directed rehabilitation were the main treatments, and Gross Motor Function Measures of 88 and 66, respectively, were used. Respondents said that current fee system is inadequate (66.1%) and appropriate fee system is needed. Conclusion : This study extensively investigated the content of and factors related to pediatric and adolescent physical therapy. Based on the current situation, efforts to improve the expertise and continuity of pediatric and adolescent physical therapists and apply the latest treatment techniques are required.

Analysis of Individualized Education Support Team Intervention Objectives Using International Classification of Functioning, Disability and Health-Children and Youth Version and the Necessity of Occupational Therapists as IEP Members: A Systematic Review (국제기능장애 건강분류: 아동 청소년 버전을 이용한 개별화교육지원팀 중재목표 분석 및 개별화교육계획 구성원으로서 작업치료사의 필요성: 체계적 고찰)

  • Yun, Sohyeon;An, Hyunseo;Kim, Inhye;Park, Hae Yean
    • Therapeutic Science for Rehabilitation
    • /
    • v.12 no.4
    • /
    • pp.23-37
    • /
    • 2023
  • Objective : This study systematically reviewed the collaborative team interventions of the Individualized Education Plan (IEP) using the International Classification of Functioning, Disability, and Health-Children and Youth (ICF-CY) framework to establish the professional domain of occupational therapists in Korea and their role as experts in IEP cooperative team interventions in special education. Methods : Articles were collected from the EBSCOhost, ProQuest, and PubMed databases. International search terms included "Special education," "Individualized education plan (IEP)," "IEP process," "IEP implementation," and "Occupational therapy." The study period was limited from January 2013 to February 2023, and the final 10 studies were analyzed using secondary classification. Results : Most studies were randomized experiments targeting individuals with autism, and often employed environmental improvements. The IEP collaborative team interventions using the ICF-CY framework emphasized goals related to activity (five studies), participation (four studies), and body structure/function (one study). Conclusion : Occupational therapists play a crucial role in collaborative IEP team interventions. This study established expertise in the context of special education in South Korea.

Three sesquiterpene lactones suppress lung adenocarcinoma by blocking TMEM16A-mediated Ca2+-activated Cl- channels

  • Ruilian Xiu;Jie Jia;Qing Zhang;Fengjiao Liu;Yaxin Jia;Yuanyuan Zhang;Beibei Song;Xiaodan Liu;Jingwei Chen;Dongyang Huang;Fan Zhang;Juanjuan Ma;Honglin Li;Xuan Zhang;Yunyun Geng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.521-531
    • /
    • 2023
  • Transmembrane protein TMEM16A, which encodes calcium-activated chloride channel has been implicated in tumorigenesis. Overexpression of TMEM16A is associated with poor prognosis and low overall survival in multiple cancers including lung adenocarcinoma, making it a promising biomarker and therapeutic target. In this study, three structure-related sesquiterpene lactones (mecheliolide, costunolide and dehydrocostus lactone) were extracted from the traditional Chinese medicine Aucklandiae Radix and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on the proliferation and migration of lung adenocarcinoma cells were examined. Whole-cell patch clamp experiments showed that these sesquiterpene lactones potently inhibited recombinant TMEM16A currents in a concentration-dependent manner. The half-maximal concentration (IC50) values for three tested sesquiterpene lactones were 29.9 ± 1.1 µM, 19.7 ± 0.4 µM, and 24.5 ± 2.1 µM, while the maximal effect (Emax) values were 100.0% ± 2.8%, 85.8% ± 0.9%, and 88.3% ± 4.6%, respectively. These sesquiterpene lactones also significantly inhibited the endogenous TMEM16A currents and proliferation, and migration of LA795 lung cancer cells. These results demonstrate that mecheliolide, costunolide and dehydrocostus lactone are novel TMEM16A inhibitors and potential candidates for lung adenocarcinoma therapy.

Molecular Signatures in Chicken Lungs Infected with Avian Influenza Viruses

  • Jeong Woong Park;Marc Ndimukaga;Jaeyoung Heo;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.193-202
    • /
    • 2023
  • Influenza IAVs are encapsulated negative-strand RNA viruses that infect many bird species' respiratory systems and can spread to other animals, including humans. This work reanalyzed previous microarray datasets to identify common and specific differentially expressed genes (DEGs) in chickens, as well as their biological activities. There were 760 and 405 DEGs detected in HPAIV and LPAIV-infected chicken cells, respectively. HPAIV and LPAIV have 670 and 315 DEGs, respectively, with both viruses sharing 90 DEGs. Because of HPAIV infection, numerous genes were implicated in a fundamental biological function of the cell cycle, according to the functional annotation of DEGs. Of the targeted genes, expressions of CDC Like Kinase 3 (CLK3), Nucleic Acid Binding Protein 1 (NABP1), Interferon-Inducible Protein 6 (IFI6), PIN2 (TERF1) Interacting Telomerase Inhibitor 1 (PINX1), and Cellular Communication Network Factor 4 (WISP1) were altered in DF-1 cells treated with polyinosinic:polycytidylic acid (PIC), a toll-like receptor 3 (TLR3) ligand, suggesting that transcription of these genes be controlled by TLR3 signaling. To gain a better understanding of the pathophysiology of AIVs in chickens, it is crucial to focus more research on unraveling the mechanisms through which AIV infections may manipulate host responses during the infection process. Insights into these mechanisms could facilitate the development of novel therapeutic strategies.

Mesenchymal Stem Cells Attenuate Asthmatic Inflammation and Airway Remodeling by Modulating Macrophages/Monocytes in the IL-13-Overexpressing Mouse Model

  • Yosep Mo;Yujin Kim ;Ji-Young Bang;Jiung Jung;Chun-Geun Lee;Jack A. Elias;Hye-Ryun Kang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.40.1-40.24
    • /
    • 2022
  • Mesenchymal stem cells (MSCs) are attractive alternatives to conventional anti-asthmatic drugs for severe asthma. Mechanisms underlying the anti-asthmatic effects of MSCs have not yet been elucidated. This study evaluated the anti-asthmatic effects of intravenously administered MSCs, focusing on macrophages and monocytes. Seven-week-old transgenic (Tg) mice with lung-specific overexpression of IL-13 were used to simulate chronic asthma. MSCs were intravenously administered four days before sampling. We examined changes in immune cell subpopulations, gene expression, and histological phenotypes. IL-13 Tg mice exhibited diverse features of chronic asthma, including severe type 2 inflammation, airway fibrosis, and mucus metaplasia. Intravenous administration of MSCs attenuated these asthmatic features just four days after a single treatment. MSC treatment significantly reduced SiglecF-CD11c-CD11b+ monocyte-derived macrophages (MoMs) and inhibited the polarization of MoMs into M2 macrophages, especially M2a and M2c. Furthermore, MSCs downregulated the excessive accumulation of Ly6c- monocytes in the lungs. While an intravenous adoptive transfer of Ly6c- monocytes promoted the infiltration of MoM and Th2 inflammation, that of MSC-exposed Ly6c- monocytes did not. Ex vivo Ly6c- MoMs upregulated M2-related genes, which were reduced by MSC treatment. Molecules secreted by Ly6c- MoMs from IL-13 Tg mice lungs upregulated the expression of fibrosis-related genes in fibroblasts, which were also suppressed by MSC treatment. In conclusion, intravenously administered MSCs attenuate asthma phenotypes of chronic asthma by modulating macrophages. Identifying M2 macrophage subtypes revealed that exposure to MSCs transforms the phenotype and function of macrophages. We suggest that Ly6c- monocytes could be a therapeutic target for asthma management.