• Title/Summary/Keyword: therapeutic approaches

Search Result 362, Processing Time 0.025 seconds

Epstein-Barr Virus-Associated Classical Hodgkin Lymphoma and Its Therapeutic Strategies

  • Lee, Im-Soon
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.398-410
    • /
    • 2011
  • Over the past few decades, our understanding of the epidemiology and immunopathogenesis of Hodgkin lymphoma (HL) has made enormous advances. Consequently, the treatment of HL has changed significantly, rendering this disease of the most curable human cancers. To date, about 80% of patients achieve long-term disease-free survival. However, therapeutic challenges still remain, particularly regarding the salvage strategies for relapsed and refractory disease, which need further identification of better prognostic markers and novel therapeutic schemes. Although the precise molecular mechanism by which Epstein-Barr virus (EBV) contributes to the generation of malignant cells present in HL still remains unknown, current increasing data on the role of EBV in the pathobiology of HL have encouraged people to start developing novel and specific therapeutic strategies for EBV-associated HL. This review will provide an overview of therapeutic approaches for acute EBV infection and the classical form of HL (cHL), especially focusing on EBV-associated HL cases.

Immunopathogenesis of childhood idiopathic nephrotic syndrome

  • Hae Il Cheong
    • Childhood Kidney Diseases
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Pediatric nephrotic syndrome (NS) is a clinical syndrome characterized by massive proteinuria, hypoalbuminemia, and generalized edema. Most childhood NS cases are idiopathic (with an unknown etiology). Traditional therapeutic approaches based on immunosuppressive agents largely support the key role of the immune system in idiopathic NS (INS), especially in the steroid-sensitive form. Although most previous studies have suggested the main role of T cell dysfunction and/or the abnormal secretion of certain glomerular permeability factors, recent studies have emphasized the role of B cells since the therapeutic efficacy of B cell depletion therapy in inducing and/or maintaining prolonged remission in patients with INS was confirmed. Furthermore, several studies have detected circulating autoantibodies that target podocyte proteins in a subset of patients with INS, suggesting an autoimmune-mediated etiology of INS. Accordingly, a new therapeutic modality using B cell-depleting drugs has been attempted, with significant effects in a subset of patients with INS. Currently, INS is considered an immune-mediated disorder caused by a complex interplay between T cells, B cells, soluble factors, and podocytes, which may vary among patients. More in-depth investigations of the pathogenic pathways of INS are required for an effective personalized therapeutic approach and to define precise targets for therapeutic intervention.

Circular RNAs in and out of Cells: Therapeutic Usages of Circular RNAs

  • Mingyu Ju;Dayeon Kim;Geurim Son;Jinju Han
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • RNAs are versatile molecules that are primarily involved in gene regulation and can thus be widely used to advance the fields of therapeutics and diagnostics. In particular, circular RNAs which are highly stable, have emerged as strong candidates for use on next-generation therapeutic platforms. Endogenous circular RNAs control gene regulatory networks by interacting with other biomolecules or through translation into polypeptides. Circular RNAs exhibit cell-type specific expression patterns, which can be altered in tissues and body fluids depending on pathophysiological conditions. Circular RNAs that are aberrantly expressed in diseases can function as biomarkers or therapeutic targets. Moreover, exogenous circular RNAs synthesized in vitro can be introduced into cells as therapeutic molecules to modulate gene expression networks in vivo. Depending on the purpose, synthetic circular RNA sequences can either be identical to endogenous circular RNA sequences or artificially designed. In this review, we introduce the life cycle and known functions of intracellular circular RNAs. The current stage of endogenous circular RNAs as biomarkers and therapeutic targets is also described. Finally, approaches and considerations that are important for applying the available knowledge on endogenous circular RNAs to design exogenous circular RNAs for therapeutic purposes are presented.

BMPs and their clinical potentials

  • Kim, Mee-Jung;Choe, Senyon
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.619-634
    • /
    • 2011
  • Bone morphogenetic protein (BMP) signaling in diseases is the subject of an overwhelming array of studies. BMPs are excellent targets for treatment of various clinical disorders. Several BMPs have already been shown to be clinically beneficial in the treatment of a variety of conditions, including BMP-2 and BMP-7 that have been approved for clinical application in nonunion bone fractures and spinal fusions. With the use of BMPs increasingly accepted in spinal fusion surgeries, other therapeutic approaches targeting BMP signaling are emerging beyond applications to skeletal disorders. These approaches can further utilize next-generation therapeutic tools such as engineered BMPs and ex vivo-conditioned cell therapies. In this review, we focused to provide insights into such clinical potentials of BMPs in metabolic and vascular diseases, and in cancer.

Optogenetic neuromodulation with gamma oscillation as a new strategy for Alzheimer disease: a narrative review

  • Ko, Haneol;Yoon, Sang-Pil
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • The amyloid hypothesis has been considered a major explanation of the pathogenesis of Alzheimer disease. However, failure of phase III clinical trials with anti-amyloid-beta monoclonal antibodies reveals the need for other therapeutic approaches to treat Alzheimer disease. Compared to its relatively short history, optogenetics has developed considerably. The expression of microbial opsins in cells using genetic engineering allows specific control of cell signals or molecules. The application of optogenetics to Alzheimer disease research or clinical approaches is increasing. When applied with gamma entrainment, optogenetic neuromodulation can improve Alzheimer disease symptoms. Although safety problems exist with optogenetics such as the use of viral vectors, this technique has great potential for use in Alzheimer disease. In this paper, we review the historical applications of optogenetic neuromodulation with gamma entrainment to investigate the mechanisms involved in Alzheimer disease and potential therapeutic strategies.

Patellofemoral Instability in Children: Imaging Findings and Therapeutic Approaches

  • Hee Kyung Kim;Shital Parikh
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.674-687
    • /
    • 2022
  • Patellofemoral instability (PFI) is common in pediatric knee injuries. PFI results from loss of balance in the dynamic relationship of the patella in the femoral trochlear groove. Patellar lateral dislocation, which is at the extreme of the PFI, results from medial stabilizer injury and leads to the patella hitting the lateral femoral condyle. Multiple contributing factors to PFI have been described, including anatomical variants and altered biomechanics. Femoral condyle dysplasia is a major risk factor for PFI. Medial stabilizer injury contributes to PFI by creating an imbalance in dynamic vectors of the patella. Increased Q angle, femoral anteversion, and lateral insertion of the patellar tendon are additional contributing factors that affect dynamic vectors on the patella. An imbalance in the dynamics results in patellofemoral malalignment, which can be recognized by the presence of patella alta, patellar lateral tilt, and lateral subluxation. Dynamic cross-sectional images are useful for in vivo tracking of the patella in patients with PFI. Therapeutic approaches aim to restore normal patellofemoral dynamics and prevent persistent PFI. In this article, the imaging findings of PFI, including risk factors and characteristic findings of acute lateral patellar dislocation, are reviewed. Non-surgical and surgical approaches to PFI in pediatric patients are discussed.

Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases

  • Oh, Doo-Byoung
    • BMB Reports
    • /
    • v.48 no.8
    • /
    • pp.438-444
    • /
    • 2015
  • Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444]

COVID-19: an update on diagnostic and therapeutic approaches

  • Iyer, Mahalaxmi;Jayaramayya, Kaavya;Subramaniam, Mohana Devi;Lee, Soo Bin;Dayem, Ahmed Abdal;Cho, Ssang-Goo;Vellingiri, Balachandar
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.191-205
    • /
    • 2020
  • The unexpected pandemic set off by the novel coronavirus 2019 (COVID-19) has caused severe panic among people worldwide. COVID-19 has created havoc, and scientists and physicians are urged to test the efficiency and safety of drugs used to treat this disease. In such a pandemic situation, various steps have been taken by the government to control and prevent the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). This pandemic situation has forced scientists to rework strategies to combat infectious diseases through drugs, treatment, and control measures. COVID-19 treatment requires both limiting viral multiplication and neutralizing tissue damage induced by an inappropriate immune reaction. Currently, various diagnostic kits to test for COVID-19 are available, and repurposing therapeutics for COVID-19 has shown to be clinically effective. As the global demand for diagnostics and therapeutics continues to rise, it is essential to rapidly develop various algorithms to successfully identify and contain the virus. This review discusses the updates on specimens/samples, recent efficient diagnostics, and therapeutic approaches to control the disease and repurposed drugs mainly focusing on chloroquine/hydroxychloroquine and convalescent plasma (CP). More research is required for further understanding of the influence of diagnostics and therapeutic approaches to develop vaccines and drugs for COVID-19.

RNA Interference as a Plausible Anticancer Therapeutic Tool

  • Ramachandran, Puthucode Venkatakrishnan;Ignacimuthu, Savarimuthu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2445-2452
    • /
    • 2012
  • RNA interference has created a breakthrough in gene silencing technology and there is now much debate on the successful usage of RNAi based methods in treating a number of debilitating diseases. Cancer is often regarded as a result of mutations in genomic DNA resulting in faulty gene expression. The occurrence of cancer can also be influenced by epigenetic irregularities in the chromatin structure which leads to alterations and mutations in DNA resulting in cancer cell formation. A number of therapeutic approaches have been put forth to treat cancer. Anti cancer therapy often involves chemotherapy targeting all the cells in common, whereby both cancer cells as well as normal cells get affected. Hence RNAi technology has potential to be a better therapeutic agent as it is possible to deactivate molecular targets like specific mutant genes. This review highlights the successful use of RNAi inducers against different types of cancer, thereby paving the way for specific therapeutic medicines.

Therapy of Diabetes Mellitus Using Experimental Animal Models

  • Min, T.S.;Park, Soo Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.672-679
    • /
    • 2010
  • Diabetes mellitus is a worldwide epidemic with high mortality. As concern over this disease rises, the number and value of research grants awarded by the National Research Foundation of Korea (NRF) have increased. Diabetes mellitus is classified into two groups. Type 1 diabetes requires insulin treatment, whereas type 2 diabetes, which is characterized by insulin resistance, can be treated using a variety of therapeutic approaches. Hyperglycemia is thought to be a primary factor in the onset of diabetes, although hyperlipidemia also plays a role. The major organs active in the regulation of blood glucose are the pancreas, liver, skeletal muscle, adipose tissue, intestine, and kidney. Diabetic complications are generally classified as macrovascular (e.g., stroke and heart disease) or microvascular (i.e., diabetic neuropathy, nephropathy, and retinopathy). Several animal models of diabetes have been used to develop oral therapeutic agents, including sulfonylureas, biguanides, thiazolidinediones, acarbose, and miglitol, for both type 1 and type 2 diseases. This review provides an overview of diabetes mellitus, describes oral therapeutic agents for diabetes and their targets, and discusses new developments in diabetic drug research.