• Title/Summary/Keyword: theory of constraints

Search Result 479, Processing Time 0.026 seconds

A Study on the Optimal Forebody Forms for Minimum Wave Resistance (최소조파 저항성능을 갖는 최적 선수형상에 관한 연구)

  • Sung-Eun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.28-39
    • /
    • 1991
  • A study on the optimization problems to find forebode shapes with minimum wavemaking and frictional resistance was performed. The afterbody was fixed as a given hull and only forebode offsets were treated as design variables. Design variables were divided into the offsets of given hull and small variation from them. For the wavemaking resistance calculation, Neumann-Kelvin theory was applied to the given hull and thin ship theory was applied to the small variation. ITTC 1957 model-ship correlation line was used for the calculation of frictional resistance. Hull surface was represented mathmatically using shape function. As object function, such as wavemaking and frictional rersistance, was quadratic form of offsets and constraints linear, quadratic programing problem could be constructed. The complementary pivot method was used to find the soulution of the quadratic programing problem. Calculations were perfomed for the Series 60 $C_{B}$=0.6. at Fn=0.289. A realistic hull form could be obtained by using proper constraints. From the results of calculation for the Series 60 $C_{B}$=0.6, it was concluded that present method gave optimal shape of bulbous bow showing a slight improvement in the wave resistance performance at design speed Fn=0.289 compared with the results from the ship theory only.

  • PDF

An Analytical Effects of Maximum Quantity Constraint on the Nash Solution in the Uniform Price Auction (발전기 최대용량 제약이 현물시장의 내쉬균형에 미치는 영향에 대한 해석적 분석)

  • 김진호;박종배;박종근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.340-346
    • /
    • 2003
  • This paper presents a game theory application for an analysis of uniform price auction in a simplified competitive electricity market and analyzes the properties of Nash equilibrium for various conditions. We have assumed that each generation firm submits his bid to a market in the form of a sealed bid and the market is operated as a uniform price auction. Two firms are supposed to be the players of the market, and we consider the maximum generation quantity constraint of one firm only. The system demand is assumed to have a linear relationship with market clearing prices and the bidding curve of each firm, representing the price at which he has a willingness to sell his generation quantity, is also assumed to have a linear function. In this paper, we analyze the effects of maximum generation quantity constraints on the Nash equilibrium of the uniform price auction. A simple numerical example with two generation firms is demonstrated to show the basic idea of the proposed methodology.

상대 이음 좌표 방법을 이용한 링키지 메카니즘에 대한 동역학적 해석에 관한 연구

  • 이동찬;배대성;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.339-343
    • /
    • 1992
  • For the analysis of dynamic behavior of dynamic behavior of multibody systems by cartesian coordinate method, maximal sets of generalized coordinates and maximum numbers of differential equation and constraints must be considered. Therefore the inefficiency of the increase of CPU time is occurred. This paper is to analyze the dynamic system by using the relative coordinate method without violating the geometric condition of systems. The graph theory and system topology were used for this study. The dynamic systems could be analyzed by the automatic generation of the informations like equation of motion, constraints, and external forces etc. And the results were compared and verified with dynamic commercial package DADS.

Rao-3 algorithm for the weight optimization of reinforced concrete cantilever retaining wall

  • Kalemci, Elif N.;?kizler, S. Banu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • The paper represents an optimization algorithm for reinforced concrete retaining wall design. The proposed method, called Rao-3 optimization algorithm, is a recently developed algorithm. The total weight of the steel and concrete, which are used for constructing the retaining wall, were chosen as the objective function. Building Code Requirements for Structural Concrete (ACI 318-05) and Rankine's theory for lateral earth pressure were considered for structural and geotechnical design, respectively. Number of the design variables are 12. Eight of those express the geometrical dimensions of the wall and four of those express the steel reinforcement of the wall. The safety against overturning, sliding and bearing capacity failure were regarded as the geotechnical constraints. The safety against bending and shear failure, minimum and maximum areas of reinforcement, development lengths of steel reinforcement were regarded as structural constraints. The performance of proposed algorithm was evaluated with two design examples.

On a notion of sensor modeling in multisensor data fusion

  • Kim, W.J.;Ko, J.H.;Chung, M.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1597-1600
    • /
    • 1991
  • In this paper, we describe a notion of sensor modeling method in multisensor data fusion using fuzzy set theory. Each sensor module is characterized by its fuzzy constraints to specific features of environment. These sensor fuzzy constraints can be imposed on multisensory data to verify their degree of truth and compatibility toward the final decision making. In comparison with other sensor modeling methods, such as probabilistic models or rule-based models, the proposed method is very simple and can be easily implemented in intelligent robot systems.

  • PDF

Stiffiness Analysis and Optimization of Strand and Wire Rope (스트랜드와 와이어 로프의 강성해석 및 최적화)

  • Heo, Seong-Pil;Yang, Won-Ho;Seong, Gi-Deuk;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1246-1253
    • /
    • 2000
  • Wire ropes are widely used in cable car, suspension bridge and elevator, etc. and there has been a growing need for ropes of large diameter. The theoretical procedures to obtain the stiffness coefficients of wire ropes, using previously reported theory, are programmed and the verification of the program is made. The effects of lay angle on the stiffness of strand are researched and comparisons on stiffness of rope are made according to the lay type. Axial stiffness optimization problems with coupling and torsional stiffness constraints are formulated and the effects of constraints on other stiffness coefficients on axial stiffness optimization are investigated.

A robust nonlinear mathematical programming model for design of laterally loaded orthotropic steel plates

  • Maaly, H.;Mahmoud, F.F.;Ishac, I.I.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.223-236
    • /
    • 2002
  • The main objective of the present paper is to address a formal procedure for orthotropic steel plates design. The theme of the proposed approach is to recast the design procedure into a mathematical programming model. The objective function to be optimized is the total weight of the structure. The total weight is function of its layout parameters and structural element design variables. Mean while the proposed approach takes into consideration the strength and rigidity criteria in addition to other dimensional constraints. A nonlinear programming model is developed which consists of a nonlinear objective function and a set of implicit/explicit nonlinear constraints. A transformation method is adopted for minimization strategy, where the primal model constrained problem is transformed into a sequence of unconstrained minimization models. The search strategy is based on the well-known Fletcher/Powell algorithm. The finite element technique is adopted for discretization and analysis strategies. Mindlin theory is selected to simulate the finite element model and a selective reduced integration scheme is exploited to avoid a shear lock problem.

Shape Optimal Design of Variable Sandwich Structure (가변 샌드위치 구조물의 형상최적설계)

  • 박철민;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2162-2171
    • /
    • 1993
  • Geneal Structure optimization is utilized to minimize the weight of structures while satisfying constraints imposed on stress, displacements and natural frequencies, etc. Sandwich structures consist of inside core and outside face sheets. The selected sandwich structures are isotropic sandwich beams and isotropic sandwich plate. The face sheets are treated as membrane and assumed to carry only tensions, while the core is assumed to carry only transverse shear. The characteristic of the varying area are considered by adding the projected component of the tension to the transverse shear. The bending theory and energy method are adopted for analyzing sandwich beams and plates, respectively. In the optimization process, the cost function is the weight of a structure, and a deflection and stress constraints are considered. Design variable are thickness and tapering coefficients which determine the shape of a structure. An existing optimization code is used for solving the formulated problems.

An Asymmetrical Realization of Nasal-Obstruent Clusters in English

  • Chung, Chin-Wan
    • English Language & Literature Teaching
    • /
    • v.15 no.2
    • /
    • pp.51-70
    • /
    • 2009
  • This study focuses on the asymmetrical realization of homorganic nasal-obstruent stop clusters in English when they occur word medially and word finally. This uneven realization of NC clusters is not only controlled by the place of articulation of the cluster constituents but also by the agreement of voicing feature specifications of the cluster elements. We propose context-sensitive constraints, which are more specified versions than *NC (Pater, 1996, 1999, 2004). The result of the study reveals that homorganic NC clusters consisting of coronal place feature are faithfully realized word finally while they are constrained word medially. The deletion of voiceless post-nasal coronal stop should be considered a new language specific strategy to avoid *NC.

  • PDF

Theory of Cosmic Reionization in the New Era of Precision Cosmology

  • Ahn, Kyungjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.234.2-234.2
    • /
    • 2012
  • As the accuracy in the measurement of cosmological parameters is ever-increasing in this era of precision cosmology, astrophysical constraints on high-redshift universe is also getting tighter. Three dimensional (3D) tomography of the high-redshift (z>~7) universe is expected to be made through the next-generation radio telescopes including various SKA pathfinders and SKA itself, which calls for extensive theoretical predictions. We present our new simulations of cosmic reionization covering the full dynamic range of radiation sources, and also the mock data for the (1) large-scale CMB polarization anisotropy for Planck mission, (2) small-scale, kinetic Sunyaev-Zel'dovich effect for South Pole Telescope project, and (3) 21-cm observations. We show that the new constraints on CMB from Planck will constrain the models of reionization significantly, which then should be tested by 3D tomography of high-redshift universe through the 21-cm observations by future radio telescopes.

  • PDF