• Title/Summary/Keyword: theory lattice

Search Result 164, Processing Time 0.029 seconds

Structural, Magnetic, and Electronic Properties of Fe: A Screened Hybrid Functional Study

  • Jang, Young-Rok;Yu, Byung-Deok
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.201-205
    • /
    • 2011
  • We performed total energy and electronic structure calculations for the basic ground state properties of Fe using the conventional generalized gradient approximation (GGA) and screened hybrid functionals as the form of the exchange-correlation functional. To that end, we calculated structural (equilibrium lattice constants, bulk moduli, and cohesive energies) and electronic (magnetic moments and densities of states) properties. Both functional calculations gave the correct ground state, the ferromagnetic bcc phase, in which the structural parameters agreed well with experimental results. However, the description of the cohesive energies and magnetic moments at the ground state exhibited different behavior from each other: the unusually small cohesive energy and large magnetic moment were observed in the screened hybrid functional calculations compared to the GGA calculations. The reason for the difference was examined by analyzing the calculated electronic structures.

Metamagnetism in $Fe_3$Al Alloy

  • Rhee, Joo-Yull;Lee, Young-Pak
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.60-62
    • /
    • 2003
  • In this study we report the results of ab initio first-principles calculations to investigate the possibility of metamagnetic behavior in Fe$_3$Al alloy. We used the WIEN2k package of full-potential linearized-augmented- plane-wave method within the local-spin-density approximation to the density-functional theory. The exchange-correlation functional is the generalized-gradient approximation of Perdew-Burke-Ernzerhof. The theoretical lattice constant, which is about 0.5% smaller than the experimental one, is obtained by minimizing the total energy. If the volume decreases about 9 % from the equilibrium, the total magnetic moment decreases abruptly from 4.6 $\mu_{B}$/f.u. to 4.0 $\mu_{B}$/f.u. Since this change is considerably large (∼14%), it is possible to measure by a simple high-pressure experiment at about 180 kbar.

Modelling the Densification Behaviour of Powders Considering Diffusion and Power-Law Creep Mechanisms during Hot Isostatic Pressing (열간정수압압축 시 확산기구 및 Power-law크립기구를 고려한 분말 치밀화거동의 모델링)

  • 김형섭
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.137-142
    • /
    • 2000
  • In order to analyze the densification behaviour of stainless steel powder compacts during hot isostatic pressing (HIP) at elevated temperatures, a power-law creep constitutive model based on the plastic deformation theory for porous materials was applied to the densification. Various densification mechanisms including interparticle boundary diffusion, grain boundary diffusion and lattice diffusion mechanisms were incorporated in the constitutive model, as well. The power-law creep model in conjunction with various diffusion models was applied to the HIP process of 316L stainless steel powder compacts under 50 and 100 MPa at $1125^{\circ}C$. The results of the calculations were verified using literature data. It could be found that the contribution of the diffusional mechanisms is not significant under the current process conditions.

  • PDF

Study on the Phase Diagram for the Polymer Bland (Polymer Bland에서의 상평형에 관한 연구)

  • Kim, Sang-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.9 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • We study on the phase diagram of the polymer blend. For this purpose, one PS (polystyrene) and two PI(polyisoprene) were employed whose molecular weights were low enough to make the experimental determinations possible. The weight-average molecular weight(Mw) of PS was 2514, and Mws of two PIs were 2700. Interaction energy density (IED) of the Flory-Huggins lattice theory was defined as a function of temperature and composition, and the consequent equations for the binodal, and critical points were derived. By fitting the experimental binodal points to the derived binodal curve with a nonlinear regression method, the expression for the IED was determined. And the expression for the IED obtained from this study was compared with those reported in the literatures. Also were discussed the importance of accuracy in the expression the IED, and the IED's dependency on the temperature, composition and molecular weights.

  • PDF

Surface Relaxation of Aluminum

  • Cha, You-Yong;Han, Wone-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.142-142
    • /
    • 2000
  • We performed a total energy calculation of clean alumunum surfaces of three low indices based on a density functional theory with a local density approximation, using the Ceperly-Alder exhange correlation parametrized by Perdew and Zunger. Pseudopotentials were generated for Al of which the plane wave cut-off was 15Ry. We used Gaussian broadening of a Fermi level to accelerate the convergence of our calculation with the Gaussian energy smearing parameter of 0.005Ry. First, we determine the lattice constant of the aluminum of an face-centered-cubic structure to be 3.96 which is comparable to the experimental data of 4.05 . The cohesive energy of 4.20eV/atom and the bulk modulus of 0.775$\times$1012dyne/cm2 are also comparable to the experimental values of 3.39eV/atom and 0.772$\times$1012dyne/cm2, respectively. Then we investigated the surface relaxation of (100), (110) and (111) surfaces using a 9-layer slab separated by 6-layer thick vacuum. The results are consistent with the existing experimental results.

  • PDF

Fluorine-Induced Local Magnetic Moment in Graphene: A hybrid DFT study

  • Kim, Hyeon-Jung;Jo, Jun-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.127.1-127.1
    • /
    • 2013
  • Recent experimental evidence that fluorinated graphene creates local magnetic moments around F adatoms has not been supported by semilocal density-functional theory (DFT) calculations where the adsorption of an F adatom induces no magnetic moment in graphene. Here, we show that such an incorrect prediction of the nonmagnetic ground state is due to the self-interaction error inherent in semilocal exchange-correlation functionals. The present hybrid DFT calculation for an F adatom on graphene predicts not only a spin-polarized ground state with a spin moment of ${\sim}1{\mu}_B$, but also a long-range spin polarization caused by the bipartite nature of the graphene lattice as well as the induced spin polarization of the graphene states. The results provide support for the experimental observations of local magnetic moments in fluorinated graphene.

  • PDF

Combination of the Verb ha- ′do′ and Entity Type Nouns in Korean: A Generative Lexicon Approach. (개체유형 명사와 동사 ′하-′의 결합에 관한 생성어휘부 이론적 접근)

  • 임서현;이정민
    • Language and Information
    • /
    • v.8 no.1
    • /
    • pp.77-100
    • /
    • 2004
  • This paper aims to account for direct combination of an entity type noun with the verb HA- 'do' (ex. piano-rul ha- 'piano-ACC do') in Korean, based on Generative Lexicon Theory (Pustejovsky, 1995). The verb HA-'do' coerces some entity type nouns (e.g., pap 'boiled rice') into event type ones, by virtue of the qualia of the nouns. Typically, a telic-based type coercion supplies individual predication to the HA- construction and an agentive-based type coercion evokes a stage-level interpretation. Type coercion has certain constraints on the choice of qualia. We further point out that qualia cannot be a warehouse of pragmatic information. Qualia are composed of necessary information to explain the lattice structure of lexical meaning and co-occurrence constraints, distinct from accidental information. Finally, we seriously consider co-composition as an alternative to type coercion for the crucial operation of type shift.

  • PDF

The Gelation Studies. of N-Methylolated PAAms in Aqueous Media

  • Cheon-Koog Kim;Jeong-In Sohn
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.34-34
    • /
    • 1993
  • The gelation phenomena of N-methylolated PAAm (M-PAAm) in aqueous media was studied. The critical gelation concentration (CGC) was very close to the calculated $C^*$ of the scaling theory. But the CGC of lower MW M-PAAm deviated from $C^*$ due to contamination of small molecules. We propose that the CGC is the close packing configuration of polymer molecules in solution. The experimental results of the gelation of M-PAAm/PAAm mixture proved that the close packing configuration is essential to make a gel. We calculated the minimum quantity of M-PAAm to make M-PAAm/PAAm mixture a gel by using the close packing configuration. We used a lattice model.

Homogenized elastic properties of graphene for moderate deformations

  • Marenic, Eduard;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.137-155
    • /
    • 2015
  • This paper presents a simple procedure to obtain a substitute, homogenized mechanical response of single layer graphene sheet. The procedure is based on the judicious combination of molecular mechanics simulation results and homogenization method. Moreover, a series of virtual experiments are performed on the representative graphene lattice. Following these results, the constitutive model development is based on the well-established continuum mechanics framework, that is, the non-linear membrane theory which includes the hyperelastic model in terms of principal stretches. A proof-of-concept and performance is shown on a simple model problem where the hyperelastic strain energy density function is chosen in polynomial form.

Magnetic Properties of Cu-doped AlN Semiconductor (AlN 반도체와 Cu의 도핑 농도에 대한 자성)

  • Kang, Byung-Sub;Lee, Haeng-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 2010
  • First-principles calculations based on spin density functional theory are performed to study the spin-resolved electronic properties of AlN doped with a Cu concentration of 6.25%-18.75%. The ferromagnetic state is more energetically favorable state than the antiferromagnetic state or the nonmagnetic state. For $Al_{0.9375}Cu_{0.0625}N$, a global magnetic moment of 1.26 mB per supercell, with a localized magnetic moment of 0.75 $m_B$ per Cu atom is found. The magnetic moment is reduced due to an increase in the number of Cu atoms occupying adjacent cation lattice position. For $Al_{0.8125}Cu_{0.1875}N$, the magnetism of the supercell disappears by the interaction of the neighboring Cu atoms. The nonmagnetic to ferromagnetic phase transition is found to occur at this Cu concentration. The range of concentrations that are spin-polarized should be restricted within very narrow.