• Title/Summary/Keyword: theoretical equations

검색결과 964건 처리시간 0.027초

Torsional analysis of a single-bent leaf flexure

  • Nguyen, Nghia Huu;Lim, Byoung-Duk;Lee, Dong-Yeon
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.189-198
    • /
    • 2015
  • We present a torsion analysis of single-bent leaf flexure that is partially restrained, subject to a torsional load. The theoretical equations for the torsional angle are derived using Castigliano's theorem. These equations consider the partially restrained warping, and are verified using finite element analysis (FEA). A sensitivity analysis over the length, width, and thickness is performed and verified via FEA. The results show that the errors between the theory result and the FEA result are lower than 6%. This indicates that the proposed theoretical torsional analysis with partially restrained warping is sufficiently accurate.

혼합모드 크랙 선단응력의 광탄성해석 (Photoelastic Analysis of Stress Field in the Neighborhood of a Mixed Mode Crack Tip)

  • 백태현
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2072-2081
    • /
    • 1992
  • 본 연구에서는 다매개변수(multiple parameters)사용시 모드 I과 모드 II에 나타나는 응력장의 특성을 분석하였고, 실험적으로 계산된 응력강도계수를 이론적인 수치해석 및 다른 실험결과에서 얻어진 값과 비교하였다.

Theoretical evaluation of collision safety for Submerged Floating Railway Tunnel (SFRT) by using simplified analysis

  • Seo, Sung-il;Moon, Jiho;Mun, Hyung-Suk
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.293-299
    • /
    • 2017
  • Submarine collisions is one of the major hazardous factor for Submerged Floating Railway Tunnel (SFRT) and this study presents the safety evaluation for submarine collision to SFRT by using theoretical approach. Simplified method to evaluate the collision safety of SFRT was proposed based on the beam on elastic foundation theory. Firstly, the time history load function for submarine collision was obtained by using one-degree-of-freedom vibration model. Then, the equivalent mass and stiffness of the structure were calculated, and the collision responses of SFRT were evaluated. Finite element analysis was conducted to verify the proposed equations, and it can be found that the collision responses, such as deflection, and acceleration, agreed well with the proposed equations. Finally, derailment condition for high speed train in SFRT due to submarine collision was proposed.

원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상 (Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam)

  • 박철희;조종두;김명구
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

Current Density Equations Representing the Transition between the Injection- and Bulk-limited Currents for Organic Semiconductors

  • Lee, Sang-Gun;Hattori, Reiji
    • Journal of Information Display
    • /
    • 제10권4호
    • /
    • pp.143-148
    • /
    • 2009
  • The theoretical current density equations for organic semiconductors was derived according to the internal carrier emission equation based on the diffusion model at the Schottky barrier contact and the mobility equation based on the field dependence model, the so-called "Poole-Frenkel mobility model." The electric field becomes constant because of the absence of a space charge effect in the case of a higher injection barrier height and a lower sample thickness, but there is distribution in the electric field because of the space charge effect in the case of a lower injection barrier height and a higher sample thickness. The transition between the injection- and bulk-limited currents was presented according to the Schottky barrier height and the sample thickness change.

PECVD 비정질 실리콘 증착 반응의 이론적 모델과 실험결과 (Theoretical Model and Experimental Results of PECVD Amorphous Silicon Deposition Process)

  • 김진홍;남철우;김성일;김용태
    • 대한전자공학회논문지
    • /
    • 제27권7호
    • /
    • pp.1049-1058
    • /
    • 1990
  • Mathematical modeling equations of a parallel plate type reactor were obtained in the PECVD process in preparing hydrogenated amorphous silicon. Velocity profiles, temperature profiles and concentration profiles in the reactor were calculated from the model. The theoretical approach was attempted to obtain the deposition rate and film uniformity at different operating conditions by calculating RF discharge parameters and establishing the reaction mechanisms of a-Si:H thin film. The modelling equations are solved by a finite difference method with control volume balance. The mean electrom energy in discharge was applied to model simulation parameter. The magnitudes of the predicted deposition rate are in good aggrement with those of experiment. The results of computer simulation shows that uniform deposition profiles can.

  • PDF

A New Accurate Equation for Estimating the Baseline for the Reversal Peak of a Cyclic Voltammogram

  • Oh, Sung-Hoon;Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.293-297
    • /
    • 2016
  • Here we propose a new equation by which we can estimate the baseline for measuring the peak current of the reverse curve in a cyclic voltammogram. A similar equation already exists, but it is a linear algebraic equation that over-simplifies the voltammetric curve and may cause unpredictable errors when calculating the baseline. In our study, we find a quadratic algebraic equation that acceptably reflects the complexity included in a voltammetric curve. The equation is obtained from a laborious numerical analysis of cyclic voltammetry simulations using the finite element method, and not from the closed form of the mathematical equation. This equation is utilized to provide a virtual baseline current for the reverse peak current. We compare the results obtained using the old linear and new quadratic equations with the theoretical values in terms of errors to ascertain the degree to which accuracy is improved by the new equation. Finally, the equations are applied to practical cyclic voltammograms of ferricyanide in order to confirm the improved accuracy.

직교이방성 복합재료로 만든 두께가 얇은 압력용기의 변형에 관한 연구 (The Study on Axisymmetric Deformation of Thin Orthotropic Composite Pressure Vessel)

  • 김형원;최용규
    • 한국추진공학회지
    • /
    • 제7권2호
    • /
    • pp.36-43
    • /
    • 2003
  • 탄소섬유 T700/Epoxy로 만든 직교이방성 구조로 된 두께가 얇은 압력용기의 반경방향의 변위에 관한 해를 곡선좌표계의 평형방정식을 사용하여 구하였다. 3차원 곡선좌표계의 변형율과 변위의 관계를 간단히 하면서 지배방정식을 유도하기 위해 변분이론과 가상일의 원리를 사용하였다. 다른 여러 종류의 직교이방성 압력용기에 대한 계산 결과를 제시했으며 수압시험을 한 결과와 비교 검토하였다. 계산결과와 시험결과는 비교적 잘 일치하였다.

Theoretical analysis of stress-strain behavior of multi-layer RC beams under flexure

  • Ertekin Oztekin
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.505-515
    • /
    • 2024
  • In this study, obtaining theoretical stress-strain curves and determining the parameters defining the equivalent rectangular stress block were aimed for 3 and 4-layered rectangular Reinforced Concrete (RC) cross-sections subjected to flexure. For these aims, the analytical stress-strain model proposed by Hognestad was chosen for the concrete grades (20 MPa≤fck≤60 MPa) used in this study. The tensile strength of the concrete was neglected and the thickness of the concrete layers in the compression zone of the concrete cross-section was taken as equal. In addition, while concrete strength was kept constant within each layer, concrete strengths belonging to separate layers were increased from the neutral axis towards the outer face of the compression zone of the concrete cross-section. After the equivalent rectangular stress block parameters were determined by numerical iterations, variations of these parameters depending on concrete strength in layers and layer numbers were obtained. Finally, some analytical equations have been proposed to predict the equivalent stress block parameters for the 3 and 4-layered RC cross-sections and validities of these proposed equations were shown by different metrics in this study.

링 레이저 자이로스콥을 위한 유한요소법 기계 설계 (Mechanical Design of Ring Laser Gyroscope Using Finite Element Method)

  • 이정익
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.107-111
    • /
    • 2013
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region (dead band) due to the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference, and an angular increment is not detected. This problem can be overcome by mechanically dithering the gyroscope. This paper presents the design method of mechanical dither by the theoretical considerations and the verification of the theoretical equations through FEM applications. As a result, comparing to the past result, the maximum prediction error of resonant frequency was within 3 percent and peak dither rate was within 5 percent. It was found that the theoretical equations can be feasible for the mechanical performance of dither.