• Title/Summary/Keyword: the water quality

Search Result 11,832, Processing Time 0.038 seconds

Application of Web-based Load Duration Curve System to TMDL Watersheds for Evaluation of Water Quality and Pollutant Loads (수질오염총량제도 유역의 수질 및 부하량 평가를 위한 웹기반 LDC 시스템의 적용)

  • Kang, Hyunwoo;Ryu, Jichul;Shin, Minhwan;Choi, Joongdae;Choi, Jaewan;Shin, Dong Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.689-698
    • /
    • 2011
  • In South Korea, Total Maximum Daily Load (TMDL) has been enforced since 2004 to restore and manage water quality in the watersheds. However, the appraisal of TMDL in South Korea has lots of weaknesses to establish the plan for recovery of water quality because it just evaluates the target water quality during the particular flow duration interval. In the United States, Load Duration Curve (LDC) method bas been widely used in the TMDL to evaluate the water quality and pollutant loads considering variation of stream flow. In a recent study, web-based Load Duration Curve system was developed to create the LDC automatically and provide the convenience of use. In this study, web-based Load Duration Curve system was applied in the Gapyeongcheon watershed using the daily flow and 8-day interval water quality data, and Q-L Rating Curve was used to evaluate the water quality and pollutant load in the watershed, also. As a result of study, water quality and pollutant load in Gapyeongcheon watershed were met with water quality standard and allocated load in the all flow durations. Web-based Load Duration Curve system could be applied to the appraisal of South Korean TMDL because it can be used to judge the impaired flow duration and build up the plan of load reduction, and it could enhance the publicity. But, web-based Load Duration Curve system should be enhanced through addition of load assessment tools such as Q-L rating curve to evaluate water quality and pollutant load objectively.

Prediction of pollution loads in agricultural reservoirs using LSTM algorithm: case study of reservoirs in Nonsan City

  • Heesung Lim;Hyunuk An;Gyeongsuk Choi;Jaenam Lee;Jongwon Do
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.193-202
    • /
    • 2022
  • The recurrent neural network (RNN) algorithm has been widely used in water-related research areas, such as water level predictions and water quality predictions, due to its excellent time series learning capabilities. However, studies on water quality predictions using RNN algorithms are limited because of the scarcity of water quality data. Therefore, most previous studies related to water quality predictions were based on monthly predictions. In this study, the quality of the water in a reservoir in Nonsan, Chungcheongnam-do Republic of Korea was predicted using the RNN-LSTM algorithm. The study was conducted after constructing data that could then be, linearly interpolated as daily data. In this study, we attempt to predict the water quality on the 7th, 15th, 30th, 45th and 60th days instead of making daily predictions of water quality factors. For daily predictions, linear interpolated daily water quality data and daily weather data (rainfall, average temperature, and average wind speed) were used. The results of predicting water quality concentrations (chemical oxygen demand [COD], dissolved oxygen [DO], suspended solid [SS], total nitrogen [T-N], total phosphorus [TP]) through the LSTM algorithm indicated that the predictive value was high on the 7th and 15th days. In the 30th day predictions, the COD and DO items showed R2 that exceeded 0.6 at all points, whereas the SS, T-N, and T-P items showed differences depending on the factor being assessed. In the 45th day predictions, it was found that the accuracy of all water quality predictions except for the DO item was sharply lowered.

Design of a Water Quality Monitoring Network in the Nakdong River using the Genetic Algorithm (유전자 알고리즘을 이용한 낙동강 유역의 수질 측정망 설계에 관한 연구)

  • Park, Su-Young;Wang, Sookyun;Choi, Jung Hyun;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.697-704
    • /
    • 2007
  • This study proposes an integrated technique of Genetic Algorishim (GA) and Geographic Information System (GIS) for designing the water quality monitoring networks. To develop solution scheme of the integrated system, fitness functions are defined by the linear combination of five criteria which stand for the operation objectives of water quality monitoring stations. The criteria include representativeness of a river system, compliance with water quality standards, supervision of water use, surveillance of pollution sources and examination of water quality changes. The fitness level is obtained through calculations of the fitness functions and input data from GIS. To find the most appropriate parameters for the problems, the sensitivity analysis is performed for four parameters such as number of generations, population sizes, probability of crossover, and probability of mutation. Using the parameters resulted from the sensitivity analysis, the developed system proposed 110 water quality monitoring stations in the Nakdong River. This study demonstrates that the integrated technique of GA and GIS can be utilized as a decision supporting tool in optimized design for a water quality monitoring network.

Assessment of tributary water quality using integrated Water Quality Index (통합수질지수를 이용한 지류지천 수질평가)

  • Kal, Byungseok;Park, Jaebeom;Kim, Sanghun;Im, Taehyo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.311-317
    • /
    • 2017
  • In this study, the water quality index was calculated using the water quality monitoring data in the Nakdong River water system and the water quality status was compared with the living standard. The water quality index was selected by the RWQI method CCME-WQI currently used by the Ministry of Environment. The water quality items were selected as 7 items for pH, DO, EC, water temperature, TOC, T-N and T-P. The evaluation period was selected from the last three years (2013~2015) and water quality monitoring data measured within the period were used. As a result of the evaluation, the results of the previous evaluation showed similar tendency to the index of living environment, but the monthly evaluation showed different BOD and T-P results. Therefore, it is concluded that it is more reliable that more complex evaluation than single water quality evaluation is needed for efficient river management.

A Study on the Drinking Water Quality and Contamination Sources in a Rural Area (일부 농촌지역의 오염원 현황과 먹는 물 수질에 관한 조사연구)

  • 김탁수;이용미;김문선;김성연;신해철;최경호;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.98-103
    • /
    • 2004
  • To evaluate the quality of drinking water and contamination sources in a rural community, this study was carried out on the summer of 2003 at Shin-Dong Myun, Chun-Cheon, Gang-Won province. Seventy three drinking water samples were collected from three different types of water supply systems. Sources of contamination were identified and the public perception of water quality area were evaluated. The findings of this study are as follows; Drinking water was mainly obtained from Local Water and Simple Piped Water Supply Systems, and pollution sources varied over the study area. Most of residents (>63%) were satisfied with the quality of drinking water and could not identify any contamination sources. Corresponding to this perception, measured water quality parameters generally met the Drinking Water Quality Standards (>64%). However, approximately 35.6% of samples exceeded the regulation for Nㅒ$_3$$^{-}$$_{-}$N, coliform, and general bacteria. The water quality was significantly different among the three water supply systems, and between the potentially contaminated areas and the rest of the areas (p<0.05). In the potentially contaminated areas, the levels of coliform and general bacteria contamination were significantly higher than the rest of the areas (p<0.05). The coliform and general bacteria values of Simple Piped Water were significantly higher than Own Piped Water's, and the NO$_3$$^{-}$$_{-}$N values of Own Piped Water were significantly higher than those of water's (p<0.05). Based on this study, NO$_3$$^{-}$$_{-}$N, coliform, and general bacteria were identified as a major problem of drinking water. To regularly manage drinking water supply systems, to identify contamination sources, and to add drainage systems are required in the study area.

Application of EFDC and WASP7 in Series for Water Quality Modeling of the Yongdam Lake, Korea

  • Seo, Dong-Il;Kim, Min-Ae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.439-447
    • /
    • 2011
  • This study aims to test the feasibility of combined use of EFDC (Environmental Fluid Dynamics Code) hydrodynamic model and WASP7.3 (Water Quality Analysis Program) model to improve accuracy of water quality predictions of the Yongdam Lake, Korea. The orthogonal curvilinear grid system was used for EFDC model to represent riverine shape of the study area. Relationship between volume, surface and elevation results were checked to verify if the grid system represents morphology of the lake properly. Monthly average boundary water quality conditions were estimated using the monthly monitored water quality data from Korean Ministry of Environment DB system. Monthly tributary flow rates were back-routed using dam discharge data and allocated in proportion to each basin area as direct measurements were not available. The optimum number of grid system was determined to be 372 horizontal cells and 10 vertical layers of the site for 1 year simulation of hydrodynamics and water quality out of iterative trials. Monthly observed BOD, TN, TP and Chl-a concentrations inside the lake were used for calibration of WASP7.3 model. This study shows that EFDC and WASP can be used in series successfully to improve accuracy in water quality modeling. However, it was observed that the amount of data to develop inflow water quality and flow rate boundary conditions and water quality data inside lake for calibration were not enough for accurate modeling. It is suggested that object-oriented data collection systems would be necessary to ensure accuracy of EFDC-WASP model application and thus for efficient lake water quality management strategy development.

Development of One-Dimensional Unsteady Water Quality Model for River (1차원 비정상상태 하천수질모의를 위한 KORIV1-WIN 개발)

  • Chung, Se Woong;Ko, Ick Hwan;Kim, Nam Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.563-567
    • /
    • 2004
  • During drought season, the self-purification capacities of the four major rivers in Korea are significantly controlled by environmental maintenance flows supplied from the mid- or upstream large dams. Therefore, it is obviously important to operate the dams considering not only water quantity aspects but also conservation of downstream water quality and aquatic ecosystems. Mathematical water quality models can be efficiently used to serve as a decision support tool for evaluating the effects of operational alternatives of upstream dams on the downstream aquatic environment. In this study, an unsteady one-dimensional water quality model, KORIV1-WIN was developed based on the theoretical and numerical algorithms for hydrodynamics and water quality simulations of CE-QUAL-RIV1. It consists of hydrodynamic(KORIV1H) and water quality(KORIV1Q) modules, and pre- and post-processors for input data preparations and output displays. The model can be used to predict one-dimensional hydraulic and water quality variations in rivers with highly unsteady flows such as dam outflow change, rainfall-runoff, and chemical spill events.

  • PDF

Management of Water Quality of Embayments in Daechong Reservoir (대청호 정체수역의 수질예측과 관리)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.33-45
    • /
    • 1994
  • Water quality of Chongju and Daejeon Water Intake Tower Region, embayments in Daechong Reservoir was found to be worse than that of main lake after analysis of water which were sampled during April, July, October in 1993. Concentration of COD and SS at those two water intake tower sites were 2.8-5.6 mg/l and 2.2-3.2 mg/l, higher than that of main lake. T-N concentration of those two sites was 1.1-1.9 mg/l similar to that of main lake, and T-P concentration of those two sites was 0.14-0.18 mg/l, higher than that of main lake. This study used water quality model of embayment which can analyse pollutant loads from stream and surrounding land use, advection, decay, and diffusion transport between embayment and main lake. The model can predict water quality of embayment according to the change of pollutant load, water elevation of embayment, quantity of water intake in order to suggest water quality management. This study suggests embayment water quality management alternatives, 1) construction of waste water treatment facilities at embayment and main lake for the decrease of pollutant loading, 2) water intake at main lake less polluted or eutrophicated than embayment, and 3) outflow elevation selection for polluted hypolimnion water outflow during stratification.

  • PDF

Effect of Water Pollution on the Irrigation Water - On the Kyungan Stream - (수질오염이 산업용수에 미치는 영향 -경안천을 중심으로-)

  • 라규환;권영식;노수홍
    • Environmental Analysis Health and Toxicology
    • /
    • v.6 no.1_2
    • /
    • pp.1-6
    • /
    • 1991
  • The quality of water in Kyungan stream was analyzed in three different areas between season of irrigation on May and of nonirrigation on august in 1990. The results of Water quality from this study were summarized as follows: 1. The quality of water is season of irrigation containing metal ions, such as Cu and Zn as well as TN was exceeded standard levels of quality of agricultural water However, in season of nonirrigation, the quality of water in Kyungan stream was not suitable for using agricultural water due to over standard levels of containing ions of Cu and Zn or DO, COD and TN. 2. The correlation of water quality exception of pH was shown a reliance when p values were greater than 0.01 for containing ions such as Cu and Zn with the DO, COD and TN. 3. The comparison of water qualities for pH between season of irrigation and season of nonirrigation in Kyungan stream was a considerable significance property when p values were less than 0.05. The water quality containing ions of Cu and Zn with DO, COD, TN and SS also indicated a significant property when p values were less than 0.01. 4. The average water qualities of a year in three different areas for pH have shown a significant property when p values are less than 0.01. The average water qualities of a year containing DO have also shown a significant property having p values of less than 0.05. But other constituents have shown no significant property in the above three different areas.

  • PDF

Watershed Management Measures for Water Quality Conservation of the Hwaseong Reservoir using BASINS/HSPF Model (BASINS/HSPF 모델을 이용한 화성호 수질보전을 위한 상류 유역 수질개선방안 연구)

  • Kang, Hyeongsik;Jang, Jae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • HSPF model based on BASINS was applied to analyze effects of watershed management measures for water quality conservation in the Hwaseong Reservoir watershed. The model was calibrated against the field measurements of meteorological data, streamflow and water qualities ($BOD_5$, T-N, T-P) at each observatory for 4 years (2007-2010). The water quality characteristics of inflow streams were evaluated. The 4 scenarios for the water quality improvement were applied to inflow streams and critical area from water pollution based on previous researches. The reduction efficiency of point and non-point sources in inflow streams was evaluated with each scenario. The results demonstrate that the expansion of advanced treatment system within wastewater treatment plants (WWTPs) and construction of pond-wetlands would be great effective management measures. In order to satisfactory the target water quality of reservoir, the measures which can control both point source and non-point source pollutants should be implemented in the watershed.