• 제목/요약/키워드: the strength parameters

검색결과 3,646건 처리시간 0.025초

Comparison of machine learning algorithms to evaluate strength of concrete with marble powder

  • Sharma, Nitisha;Upadhya, Ankita;Thakur, Mohindra S.;Sihag, Parveen
    • Advances in materials Research
    • /
    • 제11권1호
    • /
    • pp.75-90
    • /
    • 2022
  • In this paper, functionality of soft computing algorithms such as Group method of data handling (GMDH), Random forest (RF), Random tree (RT), Linear regression (LR), M5P, and artificial neural network (ANN) have been looked out to predict the compressive strength of concrete mixed with marble powder. Assessment of result suggests that, the overall performance of ANN based model gives preferable results over the different applied algorithms for the estimate of compressive strength of concrete. The results of coefficient of correlation were maximum in ANN model (0.9139) accompanied through RT with coefficient of correlation (CC) value 0.8241 and minimum root mean square error (RMSE) value of ANN (4.5611) followed by RT with RMSE (5.4246). Similarly, other evaluating parameters like, Willmott's index and Nash-sutcliffe coefficient value of ANN was 0.9458 and 0.7502 followed by RT model (0.8763 and 0.6628). The end result showed that, for both subsets i.e., training and testing subset, ANN has the potential to estimate the compressive strength of concrete. Also, the results of sensitivity suggest that the water-cement ratio has a massive impact in estimating the compressive strength of concrete with marble powder with ANN based model in evaluation with the different parameters for this data set.

Modeling shear capacity of RC slender beams without stirrups using genetic algorithms

  • Nehdi, M.;Greenough, T.
    • Smart Structures and Systems
    • /
    • 제3권1호
    • /
    • pp.51-68
    • /
    • 2007
  • High-strength concrete (HSC) is becoming increasingly attractive for various construction projects since it offers a multitude of benefits over normal-strength concrete (NSC). Unfortunately, current design provisions for shear capacity of RC slender beams are generally based on data developed for NSC members having a compressive strength of up to 50 MPa, with limited recommendations on the use of HSC. The failure of HSC beams is noticeably different than that of NSC beams since the transition zone between the cement paste and aggregates is much denser in HSC. Thus, unlike NSC beams in which micro-cracks propagate around aggregates, providing significant aggregate interlock, micro-cracks in HSC are trans-granular, resulting in relatively smoother fracture surfaces, thereby inhibiting aggregate interlock as a shear transfer mechanism and reducing the influence of compressive strength on the ultimate shear strength of HSC beams. In this study, a new approach based on genetic algorithms (GAs) was used to predict the shear capacity of both NSC and HSC slender beams without shear reinforcement. Shear capacity predictions of the GA model were compared to calculations of four other commonly used methods: the ACI method, CSA method, Eurocode-2, and Zsutty's equation. A parametric study was conducted to evaluate the ability of the GA model to capture the effect of basic shear design parameters on the behaviour of reinforced concrete (RC) beams under shear loading. The parameters investigated include compressivestrength, amount of longitudinal reinforcement, and beam's depth. It was found that the GA model provided more accurate evaluation of shear capacity compared to that of the other common methods and better captured the influence of the significant shear design parameters. Therefore, the GA model offers an attractive user-friendly alternative to conventional shear design methods.

역해석을 통한 퇴적암 절취비탈면 불연속면(층리)의 전단강도 추정 (Estimation of Shear Strength of Discontinuous (bedding) Cut Sedimentary Rock Slope by Using Back Analysis)

  • 김창호;김봉용;박태완;김태형
    • 한국지반신소재학회논문집
    • /
    • 제17권1호
    • /
    • pp.139-152
    • /
    • 2018
  • 본 연구에서는 경상분지 퇴적암지대 특히 양산단층대(일광동래단층대) 구간 퇴적암 비탈면에서 도로 시공 시 불연속면(층리)에서 발생된 파괴사례를 분석하였다. 이 지역의 경우 다른 지역에 비해 시공 중 비탈면파괴 사례가 유독 많이 발생된 지역이다. 노출된 파괴 비탈면에 대한 Face Mapping 작성 후 한계평형법에 의한 역해석을 통해 불연속면(층리)의 전단강도 파라미터를 산정하였다. 분석 결과 이 지역 불연속면(층리면) 비탈면 경우 기존 설계 전단강도 파라미터 값 및 문헌제시 값과 비교했을 때 상당히 작게 산정되는 것으로 나타났다. 이것은 층리면에 존재하는 잔존물과 지하수의 유출 등에 의한 영향으로 볼 수 있는데, 특히 점토와 같은 풍화잔존물이 불연속면의 전단강도에 감소에 영향을 미친 것으로 판단된다. 그리고 마찰각은 층리면각과 서로 비례하는 경향을 보여 두 변수사이에 관계식을 제시하였다. 이 식을 이용하여 노출된 층리면각을 알면 쉽게 전단강도 마찰각을 손쉽게 산정할 수 있다.

뉴로-퍼지 알고리즘을 이용한 점용접재의 강도추론 기술 (The Quality Assurance Technique of Resistance Spot Welding Pieces using Neuro-Fuzzy Algorithm)

  • 김주석;주연준;이상룡
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.141-151
    • /
    • 1999
  • The resistance Spot Welding is widely used in the field of assembling the plates. However we don't still have any satisfactory solution, which is non-destructive quality evaluation in real-time or on-line, against it. Moreover, even though the rate of welding under the condition of expulsion has been high until now, quality control of welding against expulsion hasn't still been established. In this paper, it was proposed on the quality assurance technique of resistance spot welding pieces using Neuro-Fuzzy algorithm. Four parameters from electrode separation signal in the case of non-expulsion, and dynamic resistance patterns in the case of expulsion are selected as fuzzy input parameters. The parameters consist of Fuzzy Inference System are determined through Neuro-Learning algorithm. And then, fuzzy Inference System is constructed. It was confirmed that the fuzzy inference values of strength have within ${\pm}$4% error specimen in comparison with real strength for the total strength range, and the specimen percent having within ${\pm}$1% error was 88.8%. According to KS(Korean Industrial Standard), tensile-shear strength limit for electric coated of zinc is 400kgf/mm2. Judging to the quality of welding is good or bad, according to this criterion and the results of inference, the probability of misjudgement that good quality is valuated into poor one was 0.43%, on contrary it was 2.59%. Finally, the proposed Neuro-Fuzzy Inference System can infer the tensile-shear strength of resistance spot welding pieces with high performance for all cases-non-expulsion and expulsion. And On-Line Welding Quality Inspection System will be realized sooner or later.

  • PDF

고강도 콘크리트 기둥의 거동에 미치는 콘크리트 강도와 띠철근의 영향 (Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns)

  • 이영호;정헌수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.245-253
    • /
    • 2002
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns using high-strength concrete. Thirty-six concrete columns with 20cm square cross-section were tested. Experimental parameters included the concrete strength, the distribution of longitudinal bars and the volumetric ratio, yield strength, spacing of lateral ties. From the experiments, we found that: 1) the increasing rate of the strength and ductility of concrete columns caused by confinement of lateral ties was decreasing, as the concrete strength increased. 2) The high volumetric ratio and the reduction of tie spacing had a tendency to enhance the strength and improve the ductility. 3) The high-strength concrete columns required high volumetric ratio of lateral ties to maintain the proper strength and ductility. It was observed that the current AIK design code to specify the maximum tie spacing of high-strength concrete columns led to the poor strength and ductility for seismic design.

Assessment of flexural and splitting strength of steel fiber reinforced concrete using automated neural network search

  • Zhang, Zhenhao;Paul, Suvash C.;Panda, Biranchi;Huang, Yuhao;Garg, Ankit;Zhang, Yi;Garg, Akhil;Zhang, Wengang
    • Advances in concrete construction
    • /
    • 제10권1호
    • /
    • pp.81-92
    • /
    • 2020
  • Flexural and splitting strength behavior of conventional concrete can significantly be improved by incorporating the fibers in it. A significant number of research studies have been conducted on various types of fibers and their influence on the tensile capacity of concrete. However, as an important property, tensile capacity of fiber reinforced concrete (FRC) is not modelled properly. Therefore, this paper intends to formulate a model based on experiments that show the relationship between the fiber properties such as the aspect ratio (length/diameter), fiber content, compressive strength, flexural strength and splitting strength of FRC. For the purpose of modeling, various FRC mixes only with steel fiber are adopted from the existing research papers. Automated neural network search (ANS) is then developed and used to investigate the effect of input parameters such as fiber content, aspect ratio and compressive strength to the output parameters of flexural and splitting strength of FRC. It is found that the ANS model can be used to predict the flexural and splitting strength of FRC in a sensible precision.

노인의 장악력 및 신체계측인자, 우울, 삶의 질에 관한 연구 : 2016년 국민건강영양조사를 이용하여 (An investigation of grip strength, anthropometric parameters, depression, quality of life in elders : Using Korea national health and nutrition examination survey (2016))

  • 강소라;김예순;문종훈
    • 고령자・치매작업치료학회지
    • /
    • 제12권2호
    • /
    • pp.19-28
    • /
    • 2018
  • 목적 본 연구는 노인의 장악력을 표준화하고 장악력, 신체계측인자, 우울, 삶의 질 사이에 상관관계를 알아보고자 하였다. 연구방법 연구자는 2016년 국민건강영양조사를 분석에 이용하였으며, 활동제한이 없는 오른손잡이 노인 중 장악력 검사를 완료한 919명의 자료를 분석하였다. 노인 전체, 남성, 여성의 장악력을 65세~69세, 70세~74세, 75세~79세, 80세 이상으로 구분하여 장악력을 표준화하였다. 신체계측인자에는 키. 몸무게, 체질량지수, 허리둘레가 포함되었다. 우울은 PHQ-9로 측정되었고, 삶의 질은 EQ-5D로 평가되었다. 연구결과 노인의 오른손잡이의 비율은 87.8%, 왼손잡이 4.9%, 양손잡이 5.7%로 나타났다. 표준화 결과 및 상관분석에서, 남녀노인 모두 나이가 증가함에 따라 장악력이 감소하였다(p<.01, r=-.308~-.305). 장악력은 키와 가장 높은 상관성을 나타냈다(p<.01, r=.747~.741). 장악력은 우울(p<.01, r=-.172~-.163)과 삶의 질(p<.01, r=.285~.267) 사이에 유의한 상관이 있었다. 결론 본 연구의 결과는 노인의 연령별 장악력 수준을 고려할 때, 키, 우울, 삶의 질에 따라 장악력의 차이가 나타날 수 있음을 고려할 필요가 있음을 시사한다.

국내 교량의 현장 코어강도를 활용한 개선된 비파괴강도 추정식 제안 (Estimation of Nondestructive Strength Equations Based on the Results of In-situ Concrete Strength for Existing Bridges)

  • 김훈겸
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권2호
    • /
    • pp.98-104
    • /
    • 2018
  • 콘크리트 비파괴강도 추정식은 일반적으로 콘크리트 강도를 결정하는데 사용된다. 그러나 기존의 추정식들은 대부분 제한된 실험 변수를 토대로 제안되어 배합조건, 강도특성 등이 다양한 실제 공용중 교량의콘크리트 압축강도 추정시 많은 오류를 포함한다. 본 연구에서는 297개 공용 교량의 정밀안전진단 결과 중 콘크리트 비파괴시험 및 현장 코어강도 시험결과를 토대로 콘크리트 부재의 코어강도와 비파괴 추정강도 평가결과를 비교분석하였다. 분석결과 분석이 이루어진 기존 추정식들 중 일본건축학회 CNDT소위원회 강도계산식이 다른 추정식에 비하여 실제파괴강도와의 오차가 가장적고 상관분석의 신뢰도도 가장높은 것으로 검토되었다. 그러나 이 추정식은 코어강도가 30 MPa이상일때 추정강도는 과소평가되는 것으로 나타났다. 이에 본 논문에서는 추정식에 의한 강도와 현장 코어강도사이의 관계를 활용하여 회귀분석을 통한 개선된 비파괴강도 추정식을 제안하였다.

A data mining approach to compressive strength of CFRP-confined concrete cylinders

  • Mousavi, S.M.;Alavi, A.H.;Gandomi, A.H.;Esmaeili, M. Arab;Gandomi, M.
    • Structural Engineering and Mechanics
    • /
    • 제36권6호
    • /
    • pp.759-783
    • /
    • 2010
  • In this paper, compressive strength of carbon fiber reinforced polymer (CFRP) confined concrete cylinders is formulated using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA, and a robust variant of GP, namely multi expression programming (MEP). Straightforward GP/SA and MEP-based prediction equations are derived for the compressive strength of CFRP-wrapped concrete cylinders. The models are constructed using two sets of predictor variables. The first set comprises diameter of concrete cylinder, unconfined concrete strength, tensile strength of CFRP laminate, and total thickness of CFRP layer. The most widely used parameters of unconfined concrete strength and ultimate confinement pressure are included in the second set. The models are developed based on the experimental results obtained from the literature. To verify the applicability of the proposed models, they are employed to estimate the compressive strength of parts of test results that were not included in the modeling process. A sensitivity analysis is carried out to determine the contributions of the parameters affecting the compressive strength. For more verification, a parametric study is carried out and the trends of the results are confirmed via some previous studies. The GP/SA and MEP models are able to predict the ultimate compressive strength with an acceptable level of accuracy. The proposed models perform superior than several CFRP confinement models found in the literature. The derived models are particularly valuable for pre-design purposes.

Indirect measure of shear strength parameters of fiber-reinforced sandy soil using laboratory tests and intelligent systems

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Toghroli, Ali;Shariati, Ali
    • Geomechanics and Engineering
    • /
    • 제22권5호
    • /
    • pp.397-414
    • /
    • 2020
  • In this paper, practical predictive models for soil shear strength parameters are proposed. As cohesion and internal friction angle are of essential shear strength parameters in any geotechnical studies, we try to predict them via artificial neural network (ANN) and neuro-imperialism approaches. The proposed models was based on the result of a series of consolidated undrained triaxial tests were conducted on reinforced sandy soil. The experimental program surveys the increase in internal friction angle of sandy soil due to addition of polypropylene fibers with different lengths and percentages. According to the result of the experimental study, the most important parameters impact on internal friction angle i.e., fiber percentage, fiber length, deviator stress, and pore water pressure were selected as predictive model inputs. The inputs were used to construct several ANN and neuro-imperialism models and a series of statistical indices were calculated to evaluate the prediction accuracy of the developed models. Both simulation results and the values of computed indices confirm that the newly-proposed neuro-imperialism model performs noticeably better comparing to the proposed ANN model. While neuro-imperialism model has training and test error values of 0.068 and 0.094, respectively, ANN model give error values of 0.083 for training sets and 0.26 for testing sets. Therefore, the neuro-imperialism can provide a new applicable model to effectively predict the internal friction angle of fiber-reinforced sandy soil.