• Title/Summary/Keyword: the spacing of reinforcement

Search Result 245, Processing Time 0.023 seconds

Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement

  • Lim, Woo-Young;Hong, Sung-Gul
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.177-188
    • /
    • 2016
  • One of the primary concerns about the design aspects is that how to deal with the shear reinforcement in the ultra-high performance fiber reinforced concrete (UHPFRC) beam. This study aims to investigate the shear behavior of UHPFRC rectangular cross sectional beams with fiber volume fraction of 1.5 % considering a spacing of shear reinforcement. Shear tests for simply supported UHPFRC beams were performed. Test results showed that the steel fibers substantially improved of the shear resistance of the UHPFRC beams. Also, shear reinforcement had a synergetic effect on enhancement of ductility. Even though the spacing of shear reinforcement exceeds the spacing limit recommended by current design codes (ACI 318-14), shear strength of UHPFRC beam was noticeably greater than current design codes. Therefore, the spacing limit of 0.75d can be allowed for UHPFRC beams.

Shear Strength Equation of Concrete Wide Beam Shear Reinforced With Steel Plate Considering Transverse Spacing and Support Width (전단 보강 간격과 지지부 조건을 고려한 유공형 강판으로 전단 보강된 콘크리트 넓은 보의 전단 강도 산정식)

  • Kim, Min Sook;Jeong, Eun Ho;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • This paper discusses the influence of transverse reinforcement spacing and support width of concrete wide beam on shear performance. In order to evaluate the shear performance, a total of thirteen specimens were constructed and tested. The transverse reinforcement spacing, the number of legs and support width were considered as variables. From the test results, the shear strength equation of concrete wide beam is proposed for prediction of shear strength of concrete wide beam to consider the transverse reinforcement spacing and support width. It is shown that the proposed equation is able to predict shear strength reasonably well for concrete wide beam.

Model Tests on Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers (보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.372-379
    • /
    • 2004
  • The model tests were conducted to assess the behavior characteristics of geogrid reinforced earth walls according to various surcharge loads and reinforcement spacing. The models were built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used was geogrid(tensile strength 2.26t/m). Decomposed granite soil(ML) was used as a backfill material. The LVDTs were installed on the model retaining walls to obtain the displacements of the facing. In the results, the maximum displacement of facing and tensile strain of geogrid was measured at 0.7H(H is wall height) from the bottom of reinforced wall.

  • PDF

Experimental and numeral investigation on self-compacting concrete column with CFRP-PVC spiral reinforcement

  • Chen, Zongping;Xu, Ruitian
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • The axial compression behavior of nine self-compacting concrete columns confined with CFRP-PVC spirals was studied. Three parameters of spiral reinforcement spacing, spiral reinforcement diameter and height diameter ratio were studied. The test results show that the CFRP strip and PVC tube are destroyed first, and the spiral reinforcement and longitudinal reinforcement yield. The results show that with the increase of spiral reinforcement spacing, the peak bearing capacity decreases, but the ductility increases; with the increase of spiral reinforcement diameter, the peak bearing capacity increases, but has little effect on ductility, and the specimen with the ratio of height to diameter of 7.5 has the best mechanical properties. According to the reasonable constitutive relation of material, the finite element model of axial compression is established. Based on the verified finite element model, the stress mechanism is revealed. Finally, the composite constraint model and bearing capacity calculation method are proposed.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Confinement Effects of Reinforced Concrete Tied Columns (철근콘크리트 띠철근 기둥의 구속효과)

  • 왕성근;한범석;이희수;신성우;반병열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-34
    • /
    • 2001
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$120mm) were fabricated to simulate similarly an actual structural members size. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were studied in this research program.

  • PDF

Pullout Test of Headed Reinforcement (Headed Reinforcement 인발실험)

  • 박명기;신인용;최동욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.203-208
    • /
    • 2001
  • Objectives of this study included design of head and evaluation of the pullout performance of the headed reinforcement that can be used to replace standard hooks in the building exterior beam-column joints. Results of 36 pullout tests are presented. Test variables included reinforcing bar diameters (16-25mm), embedment depth (6-7db), transverse reinforcement, and single-vs.-group pullout behavior. The square head designed had gross area of 4Ab and thickness of db. The headed reinforcement made of Dl6 bars developed pullout strengths close to the bar yield strength, but larger bars developed strengths smaller than the yield strengths. The pullout resistance increased with decreasing spacing of the transverse reinforcement. Use of column ties with 6.0-db spacing improved the pullout performance of the headed bars without causing difficulties in fabricating the specimens. The comparison of the pullout performances between the headed bars and the standard hooks revealed that strengths, stiffnesses, and ductile behaviors are about the same.

  • PDF

An Evaluation of Pullout Behavior Characteristics of the Steel Strip Reinforcement Bolted with Braced Angles (버팀재 볼트 접합형 강재스트립 보강재의 인발거동특성 평가)

  • 김홍택;방윤경;정중섭;박시삼;김현조
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.419-426
    • /
    • 2002
  • In this study, the steel strip reinforcement bolted with braced angles is displayed skin friction resistance as well as passive resistance through existing the steel strip reinforcement. To understand pullout behavior characteristics, friction effects between soil and reinforcement are evaluated with the width of reinforcement, magnitude of surcharge, and existence of passive resistance member through laboratory pullout test. To analyze interference effects for passive resistance member, various tests are carried on case that the number, the location, and the spacing of braced angles are different. Using this test result, pullout resistance factor is calculated to consider location of braced angles and degree of interference for spacing ratio.

  • PDF

Parametric study of shear capacity of beams having GFRP reinforcement

  • Vora, Tarak P.;Shah, Bharat J.
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.183-190
    • /
    • 2022
  • A wide range of experimental bases and improved performance with different forms of Fiber Reinforced Polymer (FRP) have attracted researchers to produce eco-friendly and sustainable structures. The reinforced concrete (RC) beam's shear capacity has remained a complex phenomenon because of various parameters affecting. Design recommendations for the shear capacity of RC elements having FRP reinforcement need a more experimental database to improve design recommendations because almost all the recommendations replace different parameters with FRP's. Steel and FRP are fundamentally different materials. One is ductile and isotropic, whereas the other is brittle and orthotropic. This paper presents experimental results of the investigation on the beams with glass fiber reinforced polymer (GFRP) reinforcement as longitudinal bars and stirrups. Total twelve beams with GFRP reinforcement were prepared and tested. The cross-section of the beams was rectangular of size 230 × 300 mm, and the total length was 2000 mm with a span of 1800 mm. The beams are designed for simply-supported conditions with the two-point load as per specified load positions for different beams. Flexural reinforcement provided is for the balanced conditions as the beams were supposed to test for shear. Two main variables, such as shear span and spacing of stirrups, were incorporated. The beams were designed as per American Concrete Institute (ACI) ACI 440.1R-15. Relation of VExp./VPred. is derived with axial stiffness, span to depth ratio, and stirrups spacing, from which it is observed that current design provisions provide overestimation, particularly at lower stirrups spacing.

A study on the optimum range of reinforcement in tunneling adjacent to structures (구조물 근접 터널시공시 최적의 보강범위에 관한 연구)

  • Lee, Hong-Sung;Kim, Dae-Young;Chun, Byung-Sik;Jung, Hyuk-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.199-211
    • /
    • 2009
  • Development of underground space is actively performed globally for better life in the surface, and the scale of the space is increasing. Extreme care should be taken in the construction of the underground space in urban areas in order to avoid damage of adjacent structures and interference with existing underground space. In case of shallow tunnels, reinforcement of ground and structures is necessary to minimize the damage to structures due to excavation but any standard for optimum range of the reinforcement has not been established yet. In this paper, a series of numerical analyses have been performed for a 20 m diameter tunnel excavated underneath a structure to investigate the degree of damage of the structure according to vertical and horizontal spacing between the tunnel and structure. In addition to that, optimum range of reinforcement is presented for each case where reinforcement is required. It has been observed that the reinforcement is necessary for the ground condition adapted in the analyses as follows: (1) if horizontal spacing ($S_{H}$) approaches to 0D (D: equivalent diameter of tunnel) for vertical spacing (Sv) of 0.5D, and (2) if tunnel exists underneath the structure for vertical spacing (Sv) of 0.75D. The reinforcement is not necessary for Sv of 10 regardless of $S_{H}$. It also has been obtained that the optimum ranges of the reinforcement around structure foundation are 7 m in depth and whole width of the structure and 5 m beyond tunnel sidewall. These reinforcememt ranges have been confirmed to be enough for stability of the structure if types of reinforcement method is appropriately selected.