• Title/Summary/Keyword: the sliding mode

Search Result 1,572, Processing Time 0.035 seconds

Sensorless Sine-Wave Controller IC for PM Brushless Motor Employing Automatic Lead-Angle Compensation

  • Kim, Minki;Heo, Sewan;Oh, Jimin;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1165-1175
    • /
    • 2015
  • This paper presents an advanced sensorless permanent magnet (PM) brushless motor controller integrated circuit (IC) employing an automatic lead-angle compensator. The proposed IC is composed of not only a sensorless sine-wave motor controller but also an isolated gate-driver and current self-sensing circuit. The fabricated IC operates in sensorless mode using a position estimator based on a sliding mode observer and an open-loop start-up. For high efficiency PM brushless motor driving, an automatic lead-angle control algorithm is employed, which improves the efficiency of a PM brushless motor system by tracking the minimum copper loss under various load and speed conditions. The fabricated IC is evaluated experimentally using a commercial 200 W PM brushless motor and power switches. The proposed IC is successfully operated without any additional sensors, and the proposed algorithm maintains the minimum current and maximum system efficiency under $0N{\cdot}m$ to $0.8N{\cdot}m$ load conditions. The proposed IC is a feasible sensorless speed controller for various applications with a wide range of load and speed conditions.

Thermoelastic effect on inter-laminar embedded delamination characteristics in Spar Wingskin Joints made with laminated FRP composites

  • Mishra, P.K.;Pradhan, A.K.;Pandit, M.K.;Panda, S.K.
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.439-447
    • /
    • 2020
  • This paper presents two sets of full three-dimensional thermoelastic finite element analyses of superimposed thermo-mechanically loaded Spar Wingskin Joints made with laminated Graphite Fiber Reinforced Plastic composites. The study emphasizes the influence of residual thermal stresses and material anisotropy on the inter-laminar delamination behavior of the joint structure. The delamination has been pre-embedded at the most likely location, i.e., in resin layer between the top and next ply of the fiber reinforced plastic laminated wingskin and near the spar overlap end. Multi-Point Constraint finite elements have been made use of at the vicinity of the delamination fronts. This helps in simulating the growth of the embedded delamination at both ends. The inter-laminar thermoelastic peel and shear stresses responsible for causing delamination damage due to a combined thermal and a static loading have been evaluated. Strain energy release rate components corresponding to the Mode I (opening), Mode II (sliding) and Mode III (tearing) of delamination are determined using the principle of Virtual Crack Closure Technique. These are seen to be different and non-self-similar at the two fronts of the embedded delamination. Residual stresses developed due to the thermoelastic anisotropy of the laminae are found to strongly influence the delamination onset and propagation characteristics, which have been reflected by the asymmetries in the nature of energy release rate plots and their significant variation along the delamination front.

A speed predictive control of the AC servo motor using DSP processor (DSP를 사용한 AC 서보 모터의 속도 예측 제어)

  • 김진환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.22-28
    • /
    • 1998
  • This paper includes AC servo motor speed control usig the predictive control strategy. Generally, AC servo motor control should have the fast response characteristics. For the issue, sliding mode control and PID control have been applied. However, the former has the speed ripple response due to the chattering and the latter requires the many trial efforts. Originally, the predictive control which has been used in process control area does not need the priori knowledge for the application system and it is easy to compute the optimal gain with the prediction. In this paper, the TMS320C31 DSP pocessor is used for AC motor control with fst dynamics and the tuning guid-line for the parameters of the predictive control algorithm is given in order to reduce the computation load. Also, the actuator saturationis implemented uisngthe QP(Quadratic Programming) method and the transient response is improved by the identified intertia coefficient when AC motor is drived at forward/reverse rotation.

  • PDF

Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads

  • Ahmadi, Habib;Foroutan, Kamran
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.643-655
    • /
    • 2020
  • Active control of nonlinear vibration of stiffened functionally graded (SFG) cylindrical shell is studied in this paper. The system is subjected to axial and transverse periodic loads in the presence of thermal uncertainty. The material composition is considered to be continuously graded in the thickness direction, also these properties depend on temperature. The relations of strain-displacement are derived based on the classical shell theory and the von Kármán equations. For modeling the stiffeners on the cylindrical shell surface, the smeared stiffener technique is used. The Galerkin method is used to discretize the partial differential equations of motion. Some comparisons are made to validate the SFG model. For suppression of the nonlinear vibration, the linear and nonlinear control strategies are applied. For control objectives, the piezoelectric actuator is attached to the external surface of the shell and the thin ring piezoelectric sensor is attached to the middle internal surface of shell. The effect of PID, feedback linearization and sliding mode control on the suppression of vibration for SFG cylindrical shell is presented.

Comparison of Wear Property Between Metal and Polymer Matrix Composites (금속복합재료와 고분자복합재료의 마모 특성 비교)

  • KIM, Jae-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1875-1881
    • /
    • 2016
  • The wear behavior for the two types of composites, those are epoxy matrix composites filled with silica particles and aluminium matrix composites filled with SiC particles, were compared to investigate the wear mechanism for these composites. Especially, the effect of the volume fraction for the epoxy matrix composites and the particle size for the aluminium matrix composites according to the apply load and sliding velocity were investigated. Wear tests of the pin-on-disc mode were carried out and followed by scanning electron microscope observations for the worn surface. The addition of the fillers in the composites were improved the wear resistance significantly and changed the wear mechanism for the both composites. These results were identified by the observation of the worn surface after testing.

Composite adaptive neural network controller for nonlinear systems (비선형 시스템제어를 위한 복합적응 신경회로망)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

Robust Wheel Slip Controller for Vehicle Stability Control

  • Kwak, Byung-Hak;Park, Young-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.174.4-174
    • /
    • 2001
  • Vehicle stability control system can enhance the vehicle stability and handling in the emergency situations through the control of traction and braking forces at the individual wheels. To achieve the desired performance, the wheel slip controller manages the hydraulic braking system to generate the desired braking force at each wheel. In this study, we propose the wheel slip controller for the generation of the braking forces based on multiple sliding mode control theory with the pulse width modulation. The proposed controller follows to the slip ratio and the brake pressure the desired ones so that the vehicle stability controller can Intervene braking force at each wheel. We show the validity and usefulness of the proposed controller through computer simulations.

  • PDF

An object-oriented programming for the simulation of integrated gasoline engine/automatic transmission control (가솔린 엔진/자동변속기 통합제어 시뮬레이션을 위한 객체지향형 프로그래밍)

  • 양경진;홍금식;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.484-487
    • /
    • 1997
  • In this paper a simulation program for the powertrain control of a gasoline engine with automatic transmission is presented, The object-oriented programming approach has been pursued, and MATLAB/ SIMULINK was adopted for its environment. The purpose of the paper is to demonstrate the programmability of a control system in the object-oriented fashion so that the transferability of the objects is guaranteed. The program developed in the paper was applied to a gasoline engine and the mathematical models used in the paper were just adopted from the literature. It is shown that the simulation results and real experimental results coincide well. Therefore, it is expected that the program or objects made in the paper are useful for the automotive engineers when they design a new engine/transmission system or modify a part of existing system.

  • PDF

The Improved Binary Disturbance Observer for the Position Control of Induction Motors (유도전동기의 위치제어를 위한 개선된 바이너리 외란관측기)

  • 한윤석;김영석;김상욱
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.249-254
    • /
    • 1998
  • A control approach for the robust position control of induction motors based on the improved binary disturbance observer is described. The conventional binary disturbance observer is used to remove the chattering problem of a sliding mode disturbance observer. However, the steady state error may be existed in the conventional binary disturbance observer because it estimates external disturbance with a constant boundary layer. In order to overcome this problem, a new binary disturbance observer with an integral augmented switching hyperplane is improved. The robustness is achieved, and the continuous control is realised by employing the improved observer without the chattering problem and the steady state error. The effectiveness of the improved observer is confirmed by the comparative experimental results.

  • PDF

Study for the Controller Design of a Direct Drive Servo Valve (직접구동형 서보밸브의 제어기 설계에 관한 연구)

  • 이성래;김종열;김치붕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.136-136
    • /
    • 2000
  • The direct drive servo valve(DDV) is composed of a DC rotor, link, valve spool and displacement sensor(LVDT) where the spool is directly coupled to the DC motor through the link. Since the DDV is a kind of one-stage valve, the robust controller is required to overcome the flow force effect on the spool motion. The mathematical equations are derived and the stability, accuracy and response speed of a DDV are investigated analytically using a linearized system block diagram. Proportional control, PID control. Time-Delay control, Sliding Mode control, and Proportional control using the load pressure are applied to DDV to find which one shows the best control performance. The digital computer simulation results show that the proportional control using the load pressure satisfies the design requirement of response speed and steady state error regardless of the variation of load pressure,

  • PDF