• Title/Summary/Keyword: the sliding mode

Search Result 1,572, Processing Time 0.025 seconds

Design of the Actuator of Shaft Sliding Type for an Optical Pick-up to Switch an Objective Lens (대물렌즈 전환식 축습동형 광학픽업용 엑츄에이터 설계)

  • Choi, Young-Suk
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.32-41
    • /
    • 1999
  • The design method that the structure of double actuators of read-only or read-writable DVD optical pick-up of high density can be compact into the structure of one actuator, is proposed. The designed actuator has the structure of the shaft sliding type in which the moving part can be rotated about the shaft accord to a used optical disc and an objective lens can be switched, and is suspended with magnetic spring. In this actuator, Coulomb's friction is used as damping force and the moving part is designed by finite element method so that the second natural vibration mode can not occur within the servo band. The mock-up of the actuator designed in this paper is made, and its dynamic characteristics is measured and estimated.

  • PDF

Position and Vibration Control of Flexible 2-Link Robot Arm Using Piezoelectric Actuators and Sensors (압전 작동기 및 감지기를 이용한 유연한 2링크 로봇팔의 위치 및 진동제어)

  • Sin, Ho-Cheol;Choe, Seung-Bok;Kim, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.206-212
    • /
    • 2000
  • This paper presents a hybrid actuator scheme to actively control the end-point position and vibration of a two-link flexible robot arm. Control scheme consists of four different actuators; two servo-motors at the hubs and two piezoceramics bonded to the surfaces of the flexible links. Two sliding hyperplanes are designed for two servo-motors which have time varying parameters to maintain control performance in any configuration. The surface gradients of the hyperplanes are determined by pole assignment technique to guarantee the stability on the hyperplanes themselves. During the motion, undesirable oscillations caused by the torques based on the rigid link dynamics are actively suppressed by applying feedback control voltages to the piezoceramic actuators. Consequently, desired tip motion is achieved. In order to demonstrate the effectiveness of the proposed methodology, experiments are performed for the regulating and tracking control problems.

  • PDF

RVEGA SMC for Precise Level Control of Coupled Tank System (이중 탱크 시스템의 정밀 수위 제어를 위한 RVEGA SMC에 관한 연구)

  • 김태우;이준탁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.102-108
    • /
    • 1999
  • The sliding rmde controller(SMC) is known as having the robust variable structures for the nonlinear control systems such as coupled tank system with the pararretric perturbations and with the rapid disturbances. But the adaptive tuning algorit1uns for their pararreters are not satisfactory. Therefore, in this paper, a Real Variable Elitist Genetic Algorithm based Sliding Mode Controller (RVEGA SMC) for the precise control of the coupled tank level was tried. The SMC's switching pararreters were optimized easily and rapidly by RVEGA The simulation results showed that the tank level could be satisfactorily controlled without any overshoot and any steady-state error by the proposed RVEGA SMC.GA SMC.

  • PDF

Impedance Model based Bilateral Control for Force reflection of a Laparoscopic Surgery Robot (복강경 수술 로봇의 힘 반향을 위한 임피던스 모델 기반의 양방향 제어)

  • Yoon, Sung-Min;Kim, Won-Jae;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.801-806
    • /
    • 2014
  • LAS (Laparoscopy Assisted Surgery) has been substituted alternatively for traditional open surgery. However, when using a commercialized robot assisted laparoscopic such as Da Vinci, surgeons have encountered some problems due to having to depend only on information by visual feedback. To solve this problem, a haptic function is required. In order to realize the haptic teleoperation system, a force feedback and bilateral control system are needed. Previous research showed that the perturbation value estimated by a SPO (Sliding Perturbation Observer) followed a reaction force that loaded on the surgical robot instrument. Thus, in this paper, the force feedback problem of surgical robots is solved through the reaction force estimation method. This paper then introduces the possibility of the haptic function realization of a laparoscopic surgery robot using a bilateral control system. For bilateral control, the master uses an impedance control and the slave uses a SMC (Sliding Mode Control). The experiment results show that a torque and force sensorless teleoperation system can be implemented using a bilateral control structure.

A Time-Varying Gain Super-Twisting Algorithm to Drive a SPIM

  • Zaidi, Noureddaher;Jemli, Mohamed;Azza, Hechmi Ben;Boussak, Mohamed
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.955-963
    • /
    • 2013
  • To acquire a performed and practical solution that is free from chattering, this study proposes the use of an adaptive super-twisting algorithm to drive a single-phase induction motor. Partial feedback linearization is applied before using a super-twisting algorithm to control the speed and stator currents. The load torque is considered an unknown but bounded disturbance. Therefore, a time-varying switching gain that does not require prior knowledge of the disturbance boundary is proposed. A simple sliding surface is formulated as the difference between the real and desired trajectories obtained from the indirect rotor flux oriented control strategy. To illustrate the effectiveness of the proposed control structure, an experimental setup around a digital signal processor (dS1104) is developed and several tests are performed.

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.

Linearization of T-S Fuzzy Systems and Robust Optimal Control

  • Kim, Min-Chan;Wang, Fa-Guang;Park, Seung-Kyu;Kwak, Gun-Pyong;Yoon, Tae-Sung;Ahn, Ho-Kyun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • This paper proposes a novel linearization method for Takagi.sugeno (TS) fuzzy model. A T-S fuzzy controller consists of linear controllers based on local linear models and the local linear controllers cannot be designed independently because of overall stability conditions which are usually conservative. To use linear control theories easily for T-S fuzzy system, the linearization of T-S fuzzy model is required. However, The linearization of T-S fuzzy model is difficult to be achieved by using existing linearization methods because fuzzy rules and membership functions are included in T-S fuzzy models. So, a new linearization method is proposed for the T-S fuzzy system based on the idea of T-S fuzzy state transformation. For the T-S fuzzy system linearized with uncertainties, a robust optimal controller with the robustness of sliding model control(SMC) is designed.

A Real-time Pedestrian Detection based on AGMM and HOG for Embedded Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1289-1301
    • /
    • 2015
  • Pedestrian detection (PD) is an essential task in various applications and sliding window-based methods utilizing HOG (Histogram of Oriented Gradients) or HOG-like descriptors have been shown to be very effective for accurate PD. However, due to exhaustive search across images, PD methods based on sliding window usually require heavy computational time. In this paper, we propose a real-time PD method for embedded visual surveillance with fixed backgrounds. The proposed PD method employs HOG descriptors as many PD methods does, but utilizes selective search so that it can save processing time significantly. The proposed selective search is guided by restricting searching to candidate regions extracted from Adaptive Gaussian Mixture Model (AGMM)-based background subtraction technique. Moreover, approximate computation of HOG descriptor and implementation in fixed-point arithmetic mode contributes to reduction of processing time further. Possible accuracy degradation due to approximate computation is compensated by applying an appropriate one among three offline trained SVM classifiers according to sizes of candidate regions. The experimental results show that the proposed PD method significantly improves processing speed without noticeable accuracy degradation compared to the original HOG-based PD and HOG with cascade SVM so that it is a suitable real-time PD implementation for embedded surveillance systems.

Prediction of the Shear Strength of FRP Strengthened RC Beams (I) - Development and Evaluation of Shear strength model - (FRP로 전단 보강된 철근콘크리트 보의 전단강도 예측 (I) - 전단강도 예측 모델제안 및 검증 -)

  • Sim Jong-Sung;Oh Hong-Seob;Moon Do-Young;Park Kyung-Dong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.343-351
    • /
    • 2005
  • This study developed a shear strength prediction model of FRP strengthened reinforced concrete beams in shear. The primary design parameters were shear crack angle and shear span to depth ratio of FRP reinforcement. Of primary concern In the suggested model was the FRP debonding failure, which Is a typical fracture mode of RC beams strengthened with FRP, The proposed model used a crack sliding model based on modified plasticity theory. To address the effect of the shear span to depth ratio, the arch action was considered in the proposed model. The proposed model was applied to RC beams strengthened with FRP. The results showed that the proposed model agree with test results.

Electrical Behavior of the Circuit Screen-printed on Polyimide Substrate with Infrared Radiation Sintering Energy Source (열소결로 제작된 유연기판 인쇄회로의 전기적 거동)

  • Kim, Sang-Woo;Gam, Dong-Gun;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.71-76
    • /
    • 2017
  • The electrical behavior and flexibility of the screen printed Ag circuits were investigated with infrared radiation sintering times and sintering temperatures. Electrical resistivity and radio frequency characteristics were evaluated by using the 4 point probe measurement and the network analyzer by using cascade's probe system, respectively. Electrical resistivity and radio frequency characteristics means that the direct current resistance and signal transmission properties of the printed Ag circuit. Flexibility of the screen printed Ag circuit was evaluated by measuring of electrical behavior during IPC sliding test. Failure mode of the Ag printed circuits was observed by using field emission scanning electron microscope and optical microscope. Electrical resistivity of the Ag circuits screen printed on Pl substrate was rapidly decreased with increasing sintering temperature and durations. The lowest electrical resistivity of Ag printed circuit was up to $3.8{\mu}{\Omega}{\cdot}cm$ at $250^{\circ}C$ for 45 min. The crack length arisen within the printed Ag circuit after $10{\times}10^4$ sliding numbers was 10 times longer than that of after $2.5{\times}10^4$ sliding numbers. Measured insertion loss and calculated insertion loss were in good agreements each other. Insertion loss of the printed Ag circuit was increased with increasing the number of sliding cycle.