• Title/Summary/Keyword: the roots of equation

Search Result 88, Processing Time 0.028 seconds

Effects of Light Intensity and Temperature on Growth and Root Yield of Valeriana fauriei var. dasycarpa HARA (쥐오줌풀의 생육 및 뿌리수량에 미치는 광도와 온도의 영향)

  • Lee, Jong-Chul;Cho, Chang-Hwan;Ahn, Tae-Jin;Choi, Young-Hyun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 1996
  • This study was conducted to know the effects of light intensity and temperature on growth of V. fauriei plants. Photosynthesis of V. fauriei had highly significant relations to light intensity and temperature in a quadratic regression model, from which the optimum light intensity and temperature for the plant growth were estimated to be 40,000lux and $17.7^{\circ}C.$ Root was produced less by shading at Jinbu where is located in alpine region, but root yield is increased by shading at Umsong where is located in plane region. Roots were produced more in Jinbu than in Umsong. A highly significant quadratic regression was noted between temperature and leaf width or root weight of V. fauriei. It was estimated from the regression equation that the optimum temperature for root growth was $20.3^{\circ}C.$

  • PDF

Numerical Analysis of the Depression Effect of Hybrid Breaker on the Run Up Height due to Tsunami based on the Modified Leading Depression N (LDN) Wave Generation Technique (Leading Depression N (LDN) Wave 조파기법에 기초한 Hybrid Breaker의 지진해일 처오름 저감효과 수치해석)

  • Cho, Yong Jun;Na, Dong Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.38-49
    • /
    • 2015
  • Past study of tsunami heavily relied on the numerical modelling using 2D Boussinesq Eq. and Solitary wave. Lately, based on the fact that numerically simulated run up heights based on solitary wave are somewhat smaller than the measured one, Leading Depression N (LDN) Wave has been elaborated, which can account the advancement of a shore line before tsunami strikes a shore. Thereafter it is reported that more accurate simulation can be possible once LDN is deployed. On the other hand, there were numerous reports indicating that stable LDN wave can't be sustained in the hydraulic model test. These conflicts between the hydraulic model tests and numerical results have their roots on the assumption made in the derivation of Boussinesq type wave model such as that wave nonlinearity is equally balanced with wave dispersiveness. Hence, in the numerical simulation based on the Boussinesq type wave model, wave dispersiveness is inevitably underestimated, especially in deep water. Based on this rationale, we developed the modified methodology for the generation of stable LDN wave in the 3D numerical wave flume, and proceeded to numerically analyze the depression effect of Hybrid Breaker on the run up height due to tsunami using the Navier Stoke Equation. The verification of newly proposed wave model in this study was carried out using the run up height from the hydraulic model test. It was shown that Hybrid Breaker consisting of three water chamber and slope at its front can reduce 13% of run up height for H = 5m, and 10% of run up height for H = 6m.

The Effect of Skewness of Nonlinear Waves on the Transmission Rate through a Porous Wave Breaker (파형의 왜도가 투과성 방파제 투과율에 미치는 영향)

  • Cho, Yong Jun;Kang, Yoon Koo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.369-381
    • /
    • 2017
  • It has been presumed that highly nonlinear skewed waves frequently observed in a surf zone could significantly influence the transmission behaviour via a porous wave breaker due to its larger inertia force than its nonlinear counterparts of zero skewness [Cnoidal waves]. In this study, in order to confirm this perception, a numerical simulation has been implemented for 6 waves the skewness of that range from 1.02 to 1.032. A numerical simulation are based on the Tool Box called as the ihFoam that has its roots on the OpenFoam. Skewed waves are guided by the shoal of 1:30 slope, and the flow in the porous media are analyzed by adding the additional damping term into the RANS (Reynolds Averaged Navier-Stokes equation). Numerical results show that the highly nonlinear skewed waves are of higher transmitted ratio than its counterparts due to its stronger inertia force. In this study, in order to see whether or not the damping at the porous structure has an effect on the wave celerity, we also derived the dispersive relationships of Nonlinear Shallow Water Eq. [NSW] with damping at the porous structure being accounted. The newly derived dispersive relationships shows that the phase lag between the damping friction and the free surface elevation due to waves significantly influence the wave celerity.

Effects of Soil Water Potential on the Moisture Injury of Rubus coreanus Miq. and Soil Properties (토양수분퍼텐셜이 복분자 습해와 토양특성에 미치는 영향)

  • Ahn, Byung-Koo;Kim, Kab-Cheol;Kim, Dae-Hyanf;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.168-175
    • /
    • 2011
  • This study was conducted to examine the impacts of different soil water potentials on environmental soil properties related to the moisture injury of Korean raspberry (Rubus coreanus Miq.). Soil water potential in the plastic film house plots was differentiated from -5 to -40 kPa. Soils in the plots contained 5.6% of plant available water. Increasing soil water contents based on the changes in water potential increased soil pH and exchangeable $Ca^{2+}$ content and decreased exchangeable $K^+$ and total N contents. It also declined soil organic matter content at 9 days after water treatments. Relationship between water potential and soil water content was given as an exponential equation, y = 96.534 - 20.28In(x). In particular, when the water potential was higher than -20 kPa (27.5% of soil moisture content), it decreased chlorophyll content in the raspberry leaves, inhibited N uptake by the plant, and increased phosphorus content with increasing days after water treatment. Also, as the 7 days after water treatment at higher than -20 kPa of water potential, the root activity of the plant was significantly decreased, and trunk (top)/root (T/R) ratio of the plant markedly declined until 9 days after water supply. Carbohydrate contents in the raspberry plant leaves and roots at dormant stage were the lowest at -5 and -10 kPa of water potential plots, and it may cause winter injury to the plant.

Studies on Charateristics of Pinus densiflora Forest in Kangwon Province (II). Constructive and Maintenance Respiration as Related to Growth of Saplings (강원도(江原道) 소나무림(林)의 특성(特性)에 관한 종합적(綜合的) 연구(硏究)(II) 유령목(幼齡木)의 생장(生長)에 따른 구성호흡(構成呼吸)과 유지호흡(維持呼吸))

  • Han, Sang Sup;Chang, Chun Geun;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.221-228
    • /
    • 1994
  • Respitation and growth rates of leaves, branches, stems and roots of 2 to 11-yr-old red pine trees(Pinus densiflora) were examined and applied to Thornley's growth equation, $$R=(\frac{1-Yg}{Yg})\frac{dW}{dt}+mW$$. The conversion efficiency of substrates(Yg), maintenance respiration coefficients(m), relative growth rates(${\mu}$) were estimated. The efficiency of conversion of substrates (Yg) was 0.3637g/g dw/yr and the maintenance respiration coefficient(m0 was 0.094g/g dw/yr. The relative growth rate(${\mu}$) was remarkably reduced with age from 0.90(2-year-old) to 0.33:11 year-old). The Ratio of gross respiration(R) per gross photosynthesis(Pg), R/Pg showed the range of 0.6~0.7 and annually 64% of Pg was spent for constructive respiration. The 3.4% of dry weight of whole tree was spent for maintenance respiration.

  • PDF

The influences of character strength on full life of adults in Korea: Mediating effects of volunteering (한국사회에서 성인의 성격강점이 충만한 삶에 미치는 영향: 봉사행동의 매개효과를 중심으로)

  • Eunho Kim;Junseong Park;Taeyun Jung
    • Korean Journal of Culture and Social Issue
    • /
    • v.23 no.4
    • /
    • pp.587-604
    • /
    • 2017
  • The purpose of this research is to analyze generation gap of positive effects on character strength for full life of adults in Korea and to verify mediating effect of volunteering from character strength in this roots. To test this effects, there was an investigated differences of perception on character strength, volunteering and full life from 1,405 Koreans. Then had set up the influence model of character strength on full life between generation, and verified the model through structural equation. Therethrough first, there was statistical significant between generations except the variables of trust, full life and meaning of life. Second, full life was positively influenced by character strength in early adulthood. Third, volunteering had fully mediated from character strength to full life in post middle aged adults, but had partially mediated in early adulthood. This will help acquaint us with importance of accompany with volunteering at character strength than character strength directly connects to full life. Based on these results, we are treated on importance of mediating volunteering effects and influences of character strengths on full life in Korean society.

Numerical Analysis of the Grand Circulation Process of Mang-Bang Beach-Centered on the Shoreline Change from 2017. 4. 26 to 2018. 4. 20 (맹방해빈의 일 년에 걸친 대순환과정 수치해석 - 2017.4.26부터 2018.4.20까지의 해안선 변화를 중심으로)

  • Cho, Young Jin;Kim, In Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.101-114
    • /
    • 2019
  • In this study, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach, which is suffering from erosion problem. We obtain the basic equation (One Line Model for shoreline) for the numerical simulation by assuming that the amount of shoreline retreat or advance is balanced by the net influx of longshore and cross-shore sediment into the unit discretized shoreline segment. In doing so, the energy flux model for the longshore sediment transport rate is also evoked. For the case of cross sediment transport, the modified Bailard's model (1981) by Cho and Kim (2019) is utilized. At each time step of the numerical simulation, we adjust a closure depth according to pertinent wave conditions based on the Hallermeier's analytical model (1978) having its roots on the Shield's parameter. Numerical results show that from 2017.4.26 to 2017.10.15 during which swells are prevailing, a shoreline advances due to the sustained supply of cross-shore sediment. It is also shown that a shoreline temporarily retreats due to the erosion by the yearly highest waves sequentially occurring from mid-October to the end of October, and is followed by gradual recovery of shoreline as high waves subdue and swells prevail. It is worth mentioning that great yearly circulation of shoreline completes when a shoreline retreats due to the erosion by the higher waves occurring from mid-March to the end of March. The great yearly circulation of shoreline mentioned above can also be found in the measured locations of shoreline on 2017.4.5, 2017.9.7, 2017.11.7, 2018.3.14. However, numerically simulated amount of shoreline retreat or advance is more significant than the physically measured one, and it should be noted that these discrepancies become more substantial for the case of RUN II where a closure depth is sustained to be as in the most morphology models like the Genesis (Hanson and Kraus, 1989).

Application of Earthworm Casting-derived Biofilter Media for Hydrogen Sulfide Removal (지렁이 분변토를 이용한 생물담체가 충전된 바이오필터에 의한 황화수소 제거)

  • Yoo, Sun-Kyoung;Lee, Eun-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.820-825
    • /
    • 2007
  • Earthworm casting was the natural fertilizer that contained high concentrations of nutrients such as nitrogen, phosphate and potassium and of over $10^8$ CFU/ml of microorganisms. Greater than 80% of feed was excreted through the fermentation by the intestinal enzyme, after worm had eaten feeds such as fallen leaves and rotten roots under the ground. Also, the soil structure of casting was known to be very efficient in the aspects of the porosity, the water permeability, and deodorizing activities. In this research, the biofilter packed with a biomedia made of casting and waste polyurethane foam, a binder, which helped to improve the durability and perpetuity of casting, was investigated to degrade malodorous hydrogen sulfide gas. The biomedia had no need of extra supply of nutrients and of microbial inoculations. On the beginning of the operations, it showed 100% removal of hydrogen sulfide gas without lag phase. At SV of 50 $h^{-1}$, hydrogen sulfide gas from the outlet of the biofilter was not detected, when inlet concentration increased to 450 ppmv. After that, removal efficiency decreased as increasing inlet hydrogen sulfide concentration. Hydrogen sulfide removal was maintained at almost 93% until inlet concentration was increased up to 950 ppmv, at which the elimination capacity of $H_2S$ was 61.2 g $S{\cdot}m^{-3}{\cdot}h^{-1}$. Maximum elimination capacity guaranteing 90% removal was 61.2, 65.9, 84.7, 89.4 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ at SV ranging from 50 $h^{-1}$ to 300 $h^{-1}$, but was 59.3 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ at SV of 400 $h^{-1}$. The results calculated from Michaelis-Menten equation revealed that $V_m$ increased from 66.04, 88.96, 117.35, 224.15, to 227.54 g $S{\cdot}m^{-3}{\cdot}h^{-1}$ with increasing space velocity in the range of 50 $h^{-1}$ to 400 $h^{-1}$. However, saturation constant$(K_s)$ decreased from 79.97 ppmv to 64.95 and 65.37 ppmv, and then increased to 127.72 and 157.43 ppmv.