• 제목/요약/키워드: the ratio of runoff

검색결과 319건 처리시간 0.021초

농촌유역에서의 유달부하량 및 유달율의 특성 (Characteristics of Runoff ratio and Pollutant Loading in Rural Watersheds)

  • 양영민;권순국
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.533-540
    • /
    • 1998
  • In this study, to propose the methods predicting water qualities in rural areas, the methods which were based on the runoff ratio, the relationships between the pollutant load(L) and the water runoff(Q), and the relationships between the runoff ratio and the water runoff in Bokha stream watersheds were examined. As a result, we had acquired reliable the values of runoff ratio and the reasonable equations between the pollutant load(L) and the water runoff(Q) in Bokha stream watersheds. And it was noticed that the runoff ratio had tendency of varying directly proportional to the water runoff.

  • PDF

유역특성 변화에 따른 도시유출모형의 매개변수 민감도분석(I) -민감도분석방법의 개발- (The Sensitivity Analysis of Parameters of Urban Runoff Models due to Variations of Basin Characteristics (I) - Development of Sensitivity Analysis Method -)

  • 서규우;조원철
    • 한국수자원학회논문집
    • /
    • 제31권3호
    • /
    • pp.243-252
    • /
    • 1998
  • 본 연구에서는 새로운 무차원값을 제시하여 도시유출모형의 매개변수결정을 위한 상대적인 민감도분석을 실시하여 매개변수별 민감도특성을 구명하였다. 민감도분석을 위한 무차원값으로 총유출량비,첨두유출량비, 유출민감도비, 민감도비율을 다음과 같이 개발하였다. $$ 유역면적의 크기와 강우분포형과 강우지속기간별로 각 적용단계별 총유출량비, 첨두유출량비, 유출민감도를 산정하기 위해 ILLUDAS모형과 SWMM모형의 매개변수를 선저하고 적정 적용범위를 결정하였다.

  • PDF

홍수유출율에 관한 수문학적 고찰 (Hydrological Review on the Fload Runoff ratio)

  • 이순혁;음성진;박명근
    • 한국농공학회지
    • /
    • 제27권4호
    • /
    • pp.42-52
    • /
    • 1985
  • This study was attempted to derivate empirical formulas for the runoff: ratio during ilood. season at three watersheds of Dan Yang, Chung Ju, and Yeo Ju are located at upper, middle, and lower portion of Nam Han river basin, respectively. Obtained formulas for flood runoff ratio can be applied as an element for the estimation, peak discharge for the design of various hydraulics structures which can be concidented with meteorological and topographical condition. The obtained through this study were analyzed as follows. 1.It was found that the magnitude of runoff ratio depends on the amount of rainfall for all studying basins. 2.Empirical formulas 'for the runoff' ratio were derivated as 1- 2,707 Rt0.345, 1-1.691 Rt0.242 and 1-1.807 Rt0.227 at Dan Yang, Chung Ju and Yeo Ju watershed, respectively. 3.The magnitude of runoff ratio was appeared in the order of Dan Yang, Chung Ju, and Yeo Ju are located at upper, middle and lower portion of Nam Han rivet basin, respectively. 4.It was assumed that in general the more it rains, the lesser becomes the ratio of loss rainfall. Especially, the ratio of loss rainfall for Dan Yang, upper portion of river basin was shown as the lowest among three watersheds. Besides, the magnitude of that was appeared in the order of Chung Ju and Yeo Ju watershed located at middle, and lower part of river basin, respectively. 5.Relative and standard errors of runoff ratio calculated by empirical formulas were shown to be within ten percent to the observed runoff ratio in all watersheds. 6.It is urgently essential that the effect of antecedent rainfall have an influence on the next coming flood should be studied in near future.

  • PDF

도시 소하천 개발에 따른 유출 변화량의 모의기법에 관한 연구

  • 김성원;조정석
    • 한국환경과학회지
    • /
    • 제7권4호
    • /
    • pp.451-460
    • /
    • 1998
  • The objectives of this study Is to evaluate the total runoff yield, peak flow and peak flow travel time depending on the urbanization, return period and rainfall patterns at the downstream of Manchon urban watershed in TaeGu City. SWM(Storm Water Management Model) is used for runog analysis based on 5 different steps of urbanization and 4 different types of Hufrs quartile according to 8 return periods. It is analyzed that the order of total runoff yield according to raiun patterns is Huffs 4, Huffs 2. Huffs 3 and Huffs 1 quartile, that of peak flow magnitude is Huffs 2, Huffs 1, Huffs 4 and Huffs 3 quartile at present development ratio. under the 60, 70, 80 and 90ft of urbanization to the 50% of urbanization by means of the rainfall patterns, the mean Increasing ratio of total runoff yield for each case is 4.55, 11.43, 16.07 and 20.02%, that of peak flow is 5.82, 13.61, 17.15 and 18.83%, the mean decreasing ratio of peak flow travel time Is 0.00, 2.44, 5.07 and 6.26%, the mean increasing ratio of runoff depth Is 4.51, 11.42, 16.02 and 20.05% respectively. the mean increasing ratio of total runoff yield by means of each and 19.71%. Therefore, as the result of this study. it can be used for principal data as to storm sewage treatment and flood damage protection planning in urban small watershed.

  • PDF

LID 설계시 식생체류지간 연결에 의한 강우유출수 저감 효과분석 (The Effect of Connected Bioretention on Reduction of Surface Runoff in LID Design)

  • 전지홍;서성철;박찬기
    • 한국물환경학회지
    • /
    • 제32권6호
    • /
    • pp.562-569
    • /
    • 2016
  • Recently, Low Impact Development (LID) is being used in Korea to control urban runoff and nonpoint source pollution. In this study, we evaluated the reduction of surface runoff from a study area, as the effect of connecting three bioretention as LID-BMP. Surface runoff and storage volume of bioretention is estimated by the Curve Number (CN) method. In this study, the storage volume of bioretention is divided by the volume of surface runoff and precipitation which directly enters the bioretention. The ratio of captured surface runoff volume to storage volume is highly influenced by the ratio of drainage area to surface area of bioretention. The high bioretention surface area-to-drainage area ratio captures more surface runoff. The ratio of 1.2 captures 51~54% of the total surface runoff, ranging from 5-30cm of bioretention depth; a ratio of 6.2 captures 81~85%. Three connected bioretentions could therefore captures much more runoff volume, ranging from $35.8{\sim}167.3m^3$, as compared to three disconnected bioretentions at their maximum amount of precipitation with non-effluent from the connecting three bioretentions. Hence, connecting LID-BMPs could improve the removal efficiencies of surface runoff volume and nonpoint source pollution.

한강 유역의 형태학적 특성과 강우-유출의 상관분석 (Morphometric Characteristics and Correlation Analysis with Rainfall-runoff in the Han River Basin)

  • 이지행;이웅희;최흥식
    • 대한토목학회논문집
    • /
    • 제38권2호
    • /
    • pp.237-247
    • /
    • 2018
  • 유역 특성은 유역과 하도망의 지형학적인 구성에 대한 특성을 반영하는 것으로 유출 특성에 영향을 준다. 본 연구에서는 유역의 형태학적 특성과 유출의 관계를 분석하기 위해 한강 유역의 19개 하천의 27개 지점을 대상으로 유역 형태학적 특성을 Arc-map을 이용하여 구하였다. 하천 형태학적 특성은 선형, 면적, 기복 측면으로 구분하여 산정하였고, 강우에 의한 유역의 반응인 연평균 유출률은 실측 강수량과 유출량 자료를 이용하여 산정하였다. 각각의 형태학적 매개변수에 대한 상관을 도식화하고, 상관특성을 분석하였다. 길이비, 형상계수, 형상인자, 면적비, 기복비, 함몰도에 의한 연간 유출률에 대한 다중 회귀분석식을 제시하였고, 결정계수는 0.691로 나타났다. 실측과 회귀분석식에 의해 계산된 연간 유출률과의 RMSE와 MAPE는 각각 0.09, 11.61%로 나타나 비교적 정확히 예측하였다.

토지이용변화에 따른 수문영향분석 (Evaluation of Hydrological Impacts Caused by Land Use Change)

  • Park, Jin-Yong
    • 한국농공학회지
    • /
    • 제44권5호
    • /
    • pp.54-66
    • /
    • 2002
  • A grid-based hydrological model, CELTHYM, capable of estimating base flow and surface runoff using only readily available data, was used to assess hydrologic impacts caused by land use change on Little Eagle Creek (LEC) in Central Indiana. Using time periods when land use data are available, the model was calibrated with two years of observed stream flow data, 1983-1984, and verified by comparison of model predictions with observed stream flow data for 1972-1974 and 1990-1992. Stream flow data were separated into direct runoff and base flow using HYSEP (USGS) to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from simulation results, and the change in these ratios with land use change, shows that the ratio of direct runoff increases proportionally with increasing urban area. The ratio of direct runoff also varies with annual rainfall, with dry year ratios larger than those for wet years shows that urbanization might be more harmful during dry years than abundant rainfall years in terms of water yield and water quality management.

도시유출모형확립을 위한 ILLUDAS모형의 매개변수 민감도분석 (The Sensitivity Analysis of Parameters of ILLUDAS for Eastiblishment of Urban Runoff Model)

  • 서규우
    • 상하수도학회지
    • /
    • 제12권3호
    • /
    • pp.91-98
    • /
    • 1998
  • In this study, the hydrological changes due to urbanization were investigated and fundamental theory and characteristics of typical urban runoff model such as ILLUDAS was studied. Above model was applied for urbanizing Dongsucheon basin, Incheon. The main parameters (II, IA, IS) which are included in model depending on runoff results were determined, and dimensionless values such as total runoff ratio($Q_{TR}$), peak runoff ratio($Q_{PR}$), and runoff sensitivity ratio ($Q_{SR}=Q_{TR}/Q_{PR}$) were estimated in order to evaluate and compare the characteristics of model based on relative sensitivity analysis.

  • PDF

유역면적과 강우특성변화에 따른 CHICAGO모형 매개변수의 민감도분석에 관한 연구 (A Study on the Sensitivity Analysis of CHICAGO Model Parameters due to Watershed Area and Rainfall Characteristics)

  • 서규우;송일준
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.74-81
    • /
    • 1999
  • In this study, the hydrological changes due to urbanization were investigated and fundamental theory and characteristics of typical urban runoff model such as CHICAGO Model was studied. Above model was applied for urbanizing Dongsucheon basin, Incheon. The main parameters(CI, CP, CS) which are included in this model depending on runoff results were determined, and dimensionless values such as total runoff ratio($Q_{TR}$), peak runoff ratio($Q_{PR}$), and runoff sensitivity ratio($Q_{SR}=Q_{TR}/Q_{PR}$) were estimated in order to evaluate and compare the characteristics of model based on relative sensitivity analysis. Finally, applied model was proposed based on understanding of work types and established urban runoff models which can simulate well for areal development patterns and urban river basin.

  • PDF

기후변화 시나리오에 따른 강정천 유역의 유출특성 분석 (Runoff Analysis of Climate Change Scenario in Gangjung Basin)

  • 이준호;양성기;김민철
    • 한국환경과학회지
    • /
    • 제24권12호
    • /
    • pp.1649-1656
    • /
    • 2015
  • Jeju Island is the highest rain-prone area in Korea that possesses affluent water resources, but future climate changes are predicted to further increase vulnerabilities as resultant of increasing of extreme events and creating spatial-temporal imbalance in water resources. Therefore, this study aimed to provide basic information to establish a proper water resources management plan by evaluating the effects of climate change on water resources using climate change scenario. Direct runoff ratio for 15 years (2000~2014) was analyzed to be 11~32% (average of 23%), and average direct runoff ratio for the next 86 years (2015~2100) was found as 28%, showing an increase of about 22% compared to the present average direct runoff ratio (23%). To assess the effects of climate change on long-term runoff, monthly runoff variation of future Gangjeong watershed was analyzed by dividing three time periods as follows: Present (2000~2030), Future 1 (2031~2070) and Future 2 (2071~2100). The estimated results showed that average monthly runoff increases in the future and the highest runoff is shown by Future 2. Extreme values has been expected to occur more frequently in the future as compared to the present.