• Title/Summary/Keyword: the quality control

Search Result 16,327, Processing Time 0.046 seconds

Optimum Strength and NH4+:NO3- Ratio of Nutrient Solution for Romaine Lettuce Cultivated in a Home Hydroponic System (가정용 수경재배기에서 재배한 로메인상추의 생육에 적합한 양액 강도와 NH4+:NO3-의 비율)

  • Kyungdeok Noh;Byoung Ryong Jeong
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.97-105
    • /
    • 2023
  • Concentration of nitrogen, one of the major elements, and ratio of two nitrogen forms (NH4+ and NO3-) in the nutrient solution affect the quality and food safety of fresh vegetable produce. This study was conducted to find an appropriate strength and NH4+:NO3- ratio of a nutrient solution for growth and development of a Romaine lettuce (Lactuca sativa L. var. longiflora) 'Caesar Green', a representative leafy vegetable, grown in a home hydroponic system. In the first experiment, plants were grown using three types of nutrient solution: A commercial nutrient solution (Peters) and two strengths (GNU1 and GNU2) of a multipurpose nutrient solution (GNU solution) developed in a Gyeongsang National University lab. Plants grown with the GNU1 and GNU2 had greater shoot length, leaf length and width, and biomass yield than Peters. On the other hand, the root hairs of plants grown with Peters were short and dark in color. Tissue NH4+ content in the Peters was higher than that of the GNU1 and GNU2. The higher contents of NH4+ in this solution may have caused ammonium toxicity. In the second experiment, eight treatment solutions, combining GNU1 and GNU2 solutions with four ratios of NO3- :NH4+ named as 1, 2, 3 and 4 were used. Both experiments showed more growth in the GNU2 group, which had a relatively low ionic strength of the nutrient solution. The growth of Romaine lettuce showed the greatest fresh weight along with low tissue NO3- content in the GNU2-2. This was more advantageous in terms of food safety in that it suppressed the accumulation of surplus NO3- in tissues due to the low ionic trength of the GNU2 subgroup. In addition, this is preferable in that it can reduce the absolute amount of the input of inorganic nutrients to the nutrient solution.

Effects of Active Modified Atmosphere Packaging on the Storability of Fresh-cut Paprika (Active MAP가 파프리카 신선편이 저장성에 미치는 영향)

  • Choi, In-Lee;Yoo, Tae-Jong;Jung, Hyun-Jin;Kim, Il-Seop;Kang, Ho-Min;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.227-232
    • /
    • 2011
  • The processing techniques are need to use the non-marketable paprika fruit because paprika that is difficult crop for cultivation and produced easily non-marketable fruits, such as physiological disorder fruit, malformed fruit, and small size fruit. This study was carried out to investigate the proper active modified atmosphere packaging (MAP) condition for enhancing the storability of fresh-cut paprika fruit. The fresh-cut paprika (cv 'Score', seminis) put into $7cm{\times}0.7cm$ size and packed them in 20 g bags. The active MAP and vacuum treated paprika fruits were packaged with LLDPE/Nylon, EVOH, Tie film, and injected partial pressures of $CO_2$ and $O_2$, and $N_2$ in the packages immediately after sealing to treat active MAP. The ratio of $CO_2$, $O_2$, and $N_2$ of active MAP conditions were 0 : 20 : 80 (air), 5 : 5 : 90, 30 : 10 : 60, 10 : 70 : 20 and vacuum treatment did not contain any gas. The passive packaging treated paprika packaged with $40{\mu}m$ ceramic film. After 7 days of storage at $9^{\circ}C$, the fresh weight decreased less than 2% in all treatments, and showed lower in 5 : 5 : 90 ($CO_2:O_2:N_2$) active-MAP treatment and higher in vacuum treatment than other treatments. The $CO_2$ and $O_2$ concentration in packages did not change remarkably in active-MA treatments except 30 : 10 : 60 active-MAP treatment that showed sharply decreased $O_2$, concentration and increased $CO_2$ concentration at $1^{st}$ day of storage at $9^{\circ}C$. The ethylene concentration in package was the highest in 30 : 10 : 60 active-MAP treatment and the lowest in the passive MAP treatment that packaged with gas permeable film during $9^{\circ}C$ storage for 7 days. The 30 : 10 : 60 active-MAP treatments were not proper condition to storage fresh-cut paprika. The visual quality was maintained higher in 0 : 20 : 80 (air), 5 : 5 : 90, and 10 : 70 : 20 active MAP treatments and passive MAP treatment than others and the firmness, off-odor, and electrolyte leakage was investigated at 7th day of storage at $9^{\circ}C$. The 5 : 5 : 90 and 10 : 70 : 20 active-MAP treatment showed higher firmness and lower off-odor than other treatments after $7^{th}$ day of storage at $9^{\circ}C$. In addition, the electrolyte leakage was reduced less than 20% at 0 : 20 : 80 (air), 5 : 5 : 90, 10 : 70 : 20, and passive MA treatments. Therefore, 10 : 70 : 20 ($CO_2:O_2:N_2$) and 0 : 20 : 80 (air) might be recommended for proper active MAP conditions.

Chemical Properties of Peunggang River and Effect of Irrigation Source on the Growth of Tomato and Cucumber (서낙동강 유역 평강천의 수질 특성과 용수원에 따른 토마토 및 오이의 생육)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Lee, Si-Young;Choi, Gyeong-Lee;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.322-327
    • /
    • 2007
  • This study was conducted to analysis the chemical properties of Peunggang river and investigate the effect of irrigation sources on the growth of tomato and cucumber. The salt concentration in Peunggang river was high by $3.22{\sim}3.62dS{\cdot}m^{-1}s$ from March to May and lower gradually from April to February of next year, which was also lower in upper stream than in middle or low stream of Peunggang river. The growth such as plant height, fresh weight and dry weight in tomato and cucumber was better in drain water and tap water irrigation than in PR water (Peunggang river) irrigation. Mean fruit weight was highest in the tap water, and that of cucumber was no significance in the treatments. The number of setting fruit was lower in the PR water than in the treatments, and which was no significance between rain water and tap water. The yield of tomato and cucumber was found to be highest by 10,594 and 11,826 kg/10a in tap water, respectively and also lowest in the PR water among the three treatments. The fruit quality, soluble solids of tomato shows a tendency to increase in the PR water as compared with the other treatment, and the rate of blossom-end rote was higher by 13.6% in the PR water. T-N and P content of tomato and cucumber were no significance in the treatments. Ca content was lowest, but Na content highest in the PR water. It was thought that a rain water and tap water as alternative irrigation source of a PR water were proper.

Physico-chemical and Sensory Characteristics of Chicken Breast Surimi with Washing and the Addition of Sodium Chloride (수세횟수와 소금 첨가에 따른 닭가슴살 수리미의 이화학적 및 관능적 특성)

  • Ha, Kyung-Hee;Jin, Sang-Keun;Kim, Il-Suk;Ko, Byung-Soon;Yang, Mi-Ra;Choi, Yeung-Joon
    • Food Science of Animal Resources
    • /
    • v.27 no.2
    • /
    • pp.142-149
    • /
    • 2007
  • This study was carried out to investigate the effects of washing time and the addition of sodium chloride(2%) on the quality characteristics of surimi made with chicken breast. The control(C) prepared from Alaska pollack was washed 2 times without sodium chloride. For the test treatments, ground chicken breast was washed 2 times only(T1), washed 2 times followed by the addition of sodium chloride(T2), washed 3 times(T3), washed 4 times with added sodium chloride(T4), washed 6 times(T5), and washed 6 times with added sodium chloride(T6) to produce chicken breast surimi. The $L^*,\;a^*$, W, shear force, and juiciness values were significantly higher, but the hardness, cohesiveness, gumminess, chewiness, aroma, flavor, and overall acceptability of Tl were significantly lower than those of the control(p<0.05). The $L^*$ value decreased as the washing time increased, and the $a^*$ and W values were significantly higher, however the hardness, breaking force, gel strength, shear force, and overall sensory scores of the samples washed 2 times were lower than those washed 4 and 6 times (p<0.05). The $L^*,\;b^*$, and shear force values were significantly lower but the $a^*$, W, hardness, cohesiveness, gumminess, chewiness, folding test results and overall sensory scores were significantly higher due to the addition of sodium chloride (p<0.05). The correlation coefficients(r>0.6) for the overall sensory scores and other items were positive for the folding test, cohesiveness, gumminess, chewiness, and flavor, but negative for shear force(p<0.05). Overall, T4 had the highest qualities and economic value among all treatments.

Effects of Different EC in Nutrient Solution on Growth and Quality of Red Mustard and Pak-Choi in Plant Factory (식물공장내 양액의 EC가 적겨자와 청경채의 생육 및 품질에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Jun Gu;Jang, Yoon Ah;Nam, Chun Woo;Yeo, Kyung-Hwan;Lee, Hee Ju;Um, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.322-326
    • /
    • 2012
  • Recently, researches related to plant factory system has been activated and production of Ssam-vegetables using artificial lighting has been increasing. In South Korea, Ssam-vegetables are very popular and the consumption is increasing every year. Because leaf vegetables cultivated under hydroponic systems are more preferable rather than those cultivated by soil culture in Korea, the plant factory system would be more effective in production of Ssam-vegetables. Therefore, this study was carried out in order to analyze the yield and vitamin C contents in red mustard (Brassica juncea L.) and pak-choi (Brassica campestris var. chinensis), which are used a lot for the Ssam-vegetables in South Korea, as influenced by different concentrations of the nutrient solution in a plant factory system. As a results, there was no significant differences in the plant height among the treatment of EC in the nutrient solution, but for red mustard plants, the number of leaves tended to decrease in the treatment with higher EC. Leaf area of pak-choi plants was significantly increased in the higher EC, while the fresh weight had a tendency to increase along with increasing EC in the nutrient solution for both crops. The photosynthetic rates did not show a distinct tendency by EC levels for red mustard plants, but for pak-choi plants, it tended to be higher at the high EC. The contents of ascorbic acid in leaves were higher with decreasing EC concentration in the nutrient solution for red mustard plants, while the content was the highest at EC $2.0dS{\cdot}m^{-1}$ for pak-choi plants. In summary, considering the marketable yields and vitamin C at different nutrient concentrations in a plant factory, the optimal concentration for red mustard and pak-choi plants was thought to be EC $2.0{\sim}2.5dS{\cdot}m^{-1}$.

Comparing Net CO2 Uptake of Schlumbergera truncata 'Pink Dew' Phylloclades in a Growth Chamber and a Greenhouse (생육상과 온실에서 게발선인장 '핑크듀'의 엽상경별 CO2 흡수율 비교)

  • Seo Hee Jung;Ah Ram Cho;Yoon Jin Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.64-71
    • /
    • 2023
  • Crassulacean acid metabolism (CAM) plants use surplus CO2 generated by cooling and heating at night when ventilation is not needed in a greenhouse. Schlumbergera truncata 'Pink Dew' is a multi-flowering cactus that needs more phylloclades for high-quality production. This study examined photosynthetic characteristics by the phylloclade levels of S. truncata in a growth chamber and a greenhouse for use of night CO2 enrichment. The CO2 uptake rate of the S. truncata's top phylloclade in a growth chamber exhibited a C3 pattern, and the second phylloclade exhibited a C3-CAM pattern. The CO2 uptake rate of the top phylloclade in a greenhouse showed a negative value both day and night, but those of the second phylloclade exhibited a CAM pattern. The stomatal conductance and water-use efficiency (WUE) of S. truncata at both the top and second phylloclades were higher in a growth chamber than in a greenhouse. The WUE of S. truncata in a growth chamber and a greenhouse was higher at the second phylloclade, which is a CAM pattern compared with those of the top phylloclade. The daily total net CO2 uptake of S. truncata was higher in a growth chamber than in a greenhouse. The daily total net CO2 uptake of S. truncata at the second phylloclade had the highest value of 155 mmol·m-2·d-1 in a growth chamber. The night total CO2 uptake of S. truncate at the second phylloclade was 3-fold higher in a growth chamber than in a greenhouse. S. truncata's second phylloclade exhibited a CAM pattern that uptake CO2 at night, and the second phylloclade, was more mature than the top phylloclade. A multi-flowering cactus S. truncata 'Pink Dew' efficiently uptake night surplus CO2 in the proper environmental condition with matured phylloclade.

Effects of Cutting Condition on Quality of Nursery Plant and Fruit Yield in 'Sulhyang' Strawberry (삽목 조건이 '설향' 딸기의 묘소질 및 과실 수량에 미치는 영향)

  • Sang Woo Lee;Yong Hyuk Lee;Jeum Kyu Hong;Sung Hwan Choi;Soo Jeong Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.405-415
    • /
    • 2023
  • This study was conducted to investigate optimal conditions for cutting propagation of the strawberry cultivar "Sulhyang" through the collection methods of cuttings (runners tips), leaf number of cuttings, and cutting time. Cuttings were collected from the mother plant in the nursery bed (MP) and plants after fruit harvest (HP); the leaf number of cuttings was 0, 1, and 2, and the cutting time was at one-week intervals from June 4 to July 9. The survival rates for MP and HP cuttings were notably high, reaching 99.5% and 98.7%, respectively, but no significant difference was found. The number of roots were higher in MP cuttings, and there was no significant difference in crown and leaf growth. The fruit yields were 419.2 and 428.4 g, for MP and HP cuttings, respectively. The survival rates according to leaf number of cuttings were 98.1% and 98.3% for 1 and 2 remaining leaves, respectively, and remarkably lower at 25.3% for no remaining leaves. The root numbers were 26.0 and 26.3 for 1 and 2 remaining leaves, respectively, compared with 23.5 for no remaining leaves, with no significant differences in crown and leaf growth. The fruit yields were 424.4 and 421.5 g for 1 and 2 remaining leaves, respectively, and 396.7 g for no remaining leaves. The survival rates according to cutting time was over 97.2% in all cutting time without any difference in each treatment. The root, shoot, and crown of the nursery plant before planting showed the best growth in the cuttings on June 4 and 11, resulting in the highest fruit yields of 433.3 and 426.4 g, respectively, with the lowest yields at 384.5 g for cutting time on July 9. Both MP and HP materials proved suitable for strawberry cuttings. The optimal leaf number for cuttings was at least 1, and the optimal cutting time in Gyeongnam area was evaluated as around June 4-11.

Stabilization of As (arsenic(V) or roxarsone) Contaminated Soils using Zerovalent Iron and Basic Oxygen Furnace Slag (영가철(Zerovalent Iron)과 제강슬래그를 이용한 비소(V) 및 록살슨(Roxarsone) 오염토양의 비소 안정화 효율 평가)

  • Lim, Jung-Eun;Kim, Kwon-Rae;Lee, Sang-Soo;Kwon, Oh-Kyung;Yang, Jae-E;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.631-638
    • /
    • 2010
  • The objective of this study was to evaluate the efficiency of zerovalent iron and basic oxygen furnace slag on arsenic stabilization in soils. For this, arsenic (V) contaminated soil and roxarsone contaminated soil were incubated after incorporation with zerovalent iron (ZVI) or basic oxygen furnace slage (BOFS) at four different levels (0%, 1%, 3%, and 5%) for 30 days and then the residual concentrations of arsenic were analysed following extraction with aqua reqia, 1N HCl and 0.01 M $CaCl_2$. The total concentration of arsenic was 2,285 mg/kg in the As(V) contaminated soil and 6.5 mg/kg in the roxarsone contaminated soil. 1 N HCl extractable arsenic concentration in the As(V) contaminated soil was initially 1,351 mg/kg and this was significantly declined by 713~1,034 mg/kg following incubation with ZVI while BOFS treatment showed no effect on the stabilization of inorganic arsenate except 5% treatment which showed around 100 mg/kg reduction in 1N HCl extractable arsenic. Similarly, in the roxarsone contaminated soil 1N HCl extractable concentration of arsenic was reduced from 3.13 mg/kg to 0.69 mg/kg with ZVI treatment increased from 1% to 5% while BOFS treatment did not lead to any statistically significant reduction. Available (0.01M $CaCl_2$ extractable) arsenic was initially 0.85 mg/kg in the As(V) contaminated soil and this declined by 0.79 mg/kg following incorporation with 5% ZVI, which accounted for more than 90% of the available As in the control. When As(V)-contaminated soil was treated with BOFS, the available arsenic was increased due to competing effect of the phosphate originated from BOFS with arsenate for the adsorption sites. For the roxarsone contaminated soil, the greater the treatment of ZVI or BOFS, the lower the available arsenic concentration although it was still higher than that of the control.

A Function and Weight Selection of Ecosystem Service Function for the Eco-friendly Protected Horticulture Complex in Agricultural Landscape (시설원예단지의 친환경적 조성을 위한 생태계서비스 기능 및 가중치 산정)

  • SON, Jinkwan;KONG, Minjae;SHIN, Yukung;YUN, Sungwook;KANG, Donghyeon;Park, Minjung;LEE, Siyoung
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.533-541
    • /
    • 2017
  • Agricultural landscape has many ecosystem service functions. However, the development of the horticulture complex has no consideration for environmental conservation. Therefore, we analyzed the priorities of ecosystem service functions required for the composition. The study was conducted in three stages. As a result of the first survey, 17 functions were selected to be improved. In the second survey, 12 functions were selected excluding 5 functions. Finally, 1. Measures for water purification, 2. Groundwater recharge plan, 3. Surface water storage space, 4. Flood control measures, 5. Vegetation diversity space, 6. Carbon emission reduction plan, 7. Aquatic insect habitat space, 8. Amphibian reptiles 9. Landscape and Waste Management, 10. Bird Species Space, 11. Heat Island Mitigation Plan, 12. Experience / Ecological Education Plan. We proposed the structure, capacity, flow rate, arrangement and form of the water treatment facility to improve water quality by improving the function. We proposed a reservoir space of 7-10% for groundwater recharge. The development of reservoir and storage facilities suitable for the Korean situation is suggested for the surface water storage and flood control measures. And proposed to secure a green space for the climate cycle. Proposed habitat and nutrient discharge management for biodiversity. We propose green area development and wetland development to improve the landscape, and put into the facilities for experiential education. The results of the research can be utilized for the development and improvement of the horticultural complex.

Characteristics and Antioxidant Properties of Yanggaeng Containing Enzymatic Hydrolyzed White Ginseng or Red Ginseng (효소 가수분해 백삼, 홍삼을 첨가한 양갱의 품질특성 및 항산화 활성)

  • Suh, Hee-Jae
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.418-429
    • /
    • 2021
  • This paper investigates the antioxidant activity and quality characteristics of yanggaeng containing white ginseng and red ginseng extracts and their enzyme hydrolysates that were produced for the purpose of the study. White and red ginseng extracts were hydrolyzed using Rapidase C80 max, Pyr-flo, and Ultimase MFC. Ginsenoside F2 and compound K (CK) were not detected in white and red ginseng before enzymic reaction but were detected in white and red ginseng hydrolyzed through Rapidase C80 max, Pyr-flo, and Ultimase MFC, and the content of CK was the highest in the second enzymic reaction group of red ginseng. Upon preparing yanggaeng containing white and red ginseng before or after enzymatic hydrolysis, the polyphenol content and antioxidant abilities were analyzed. The yanggaeng containing enzyme-hydrolyzed white ginseng and red ginseng showed greater total polyphenol content, superior DPPH radical scavenging activity, superior ABTS radical scavenging activity, and superior FRAP analysis results compared to the yanggaeng that doesn't contain white or red ginseng. As the enzymic reaction was performed in the added white and red ginseng, the antioxidant activity increased significantly (P<0.05). In brightness(L*), non-additive yanggaeng (control group) was the highest, red ginseng yanggaeng (RG) showed the highest redness(a*), and the white ginseng yanggaeng (WG) showed the highest yellowness(b*). In terms of texture, the yanggaeng containing red ginseng with second hydrolysis (RG-T2) showed significantly high results in hardness, springiness, chewiness, cohesiveness, and gumminess (P<0.05). In conclusion, treating white and red ginseng with Rapidase C80 max, Pyr-flo, and Ultimase MFC is very useful in ginsenoside deglycosylation and will produce CK with excellent biological activity. It can also be seen that yanggaeng containing white and red ginseng hydrolyzed with enzymes significantly increase total polyphenol and antioxidant activity compared to the control group (yanggaeng with no added ginseng). These results will be useful as excellent foundational data for the production of functional yanggaeng in the future.