• Title/Summary/Keyword: the optimum water absorption ratio

Search Result 66, Processing Time 0.031 seconds

Physicochemical Properties of Rice Extrudate with Added Ginger Powder by the Response Surface Regression Analysis (반응 표면 분석에 의한 생강 분말을 첨가한 쌀 압출 성형물의 이화학적 성질)

  • 고광진
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.3
    • /
    • pp.178-188
    • /
    • 1993
  • This research was attempted to investigate changes in physicochemical properties of rice extrudate with added ginger powder extruded by single screw extruder. Graphic three dimensional analysis on response surface regression was used to evaluate effects of extrusion variables on quality factors of the extrudate according to two independent variables, ginger consent 0∼12%, moisture content 14∼26%. The summarized results are as follows : 1) Regarding proximate composition of rice extrudate with added ginger powder, as ginger powder content of raw material Increased, crude tat, crude protein, crude ash and crude fiber increased, while soluble nitrogen free extract decreased. 2) Graphic three dimensional analysis on response surface regression was conducted for each dependent variable which revealed statistically significant relationship with independent variables, 0∼120A ginger and 14∼26% moisture content. Expansion ratio had a critical point as moisture content changed. As ginger and moisture content Increased, bulk density, break strength and water absorption Index Increased, while water solubility Index decreased. The predicted maximum degree of gelatinization in 6.15% ginger and 15.56% moisture content is 88.27%, and lightness decreased as ginger content Increased. According to the microstructure for the cross section of extrudate obsorbed with image analyzer, air cell number and perimeter revealed saddle point, meanwhile total area and fractarea of air cell had critical points as moisture content changed. In view of the results, quality of rice extrudate with added ginger powder was optimum when rice flour was fed to the extruder with 2∼7% singer powder and 15∼20% moisture content.

  • PDF

Effect of metakaolin on the properties of conventional and self compacting concrete

  • Lenka, S.;Panda, K.C.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.31-48
    • /
    • 2017
  • Supplementary cementitious materials (SCM) have turned out to be a vital portion of extraordinary strength and performance concrete. Metakaolin (MK) is one of SCM material is acquired by calcinations of kaolinite. Universally utilised as pozzolanic material in concrete to enhance mechanical and durability properties. This study investigates the fresh and hardened properties of conventional concrete (CC) and self compacting concrete (SCC) by partially replacing cement with MK in diverse percentages. In CC and SCC, partial replacement of cement with MK varies from 5-20%. Fresh concrete properties of CC are conducted by slump test and compaction factor tests and for SCC, slump flow, T500, J-Ring, L-Box, V-Funnel and U-Box tests. Hardened concrete characteristics are investigated by compressive, split tensile and flexural strengths at age of 7, 28 and 90 days of curing under water. Carbonation depth, water absorption and density of MK based CC and SCC was also computed. Fresh concrete test results indicated that increase in MK replacement increases workability of concrete in a constant w/b ratio. Also, outcomes reveal that concrete integrating MK had greater compressive, flexural and split tensile strengths. Optimum replacement level of MK for cement was 10%, which increased mechanical properties and robustness properties of concrete.

Physicochemical Characteristics and Varietal Improvement Related to Palatability of Cooked Rice or Suitability to Food Processing in Rice (쌀 식미 및 가공적성에 관련된 이화학적 특성)

  • 최해춘
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.39-74
    • /
    • 2001
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s∼1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great, progress and success was obtained in development of high-quality japonica cultivars and qualify evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice caltivars and special rices adaptable for food processing such as large kernel, chalky endosperm aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and torture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak. hot paste and consistency viscosities of viscogram with year difference. The high-quality rice variety “Ilpumbyeo” showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic mcroscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high Probability of determination. The ${\alpha}$ -amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were Ilpumbyeo, Chucheongbyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tongil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, shelved the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogiadation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice bread. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large gram rices showed better suitability for fermentation and brewing. Our breeding efforts on rice quality improvement for the future should focus on enhancement of palatability of cooked rice and marketing qualify as well as the diversification in morphological and physicochemical characteristics of rice grain for various value-added rice food processings.

  • PDF

Silver Coating on the Porous Pellets from Porphyry Rock and Application to an Antibacterial Media (반암(맥반석)으로 제조한 다공성 펠렛의 Ag 담지 및 항균 메디아로서의 적용)

  • Han, Yo-Sep;Kim, Hyun-Jung;Shin, Young-Seop;Park, Jai-Koo;Ko, Jae-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • The porous pellets were prepared from porphyry by slurry foaming method. The effect of sintering temperatures on pore structure of porous porphyry pellets with different extension ratio ($E_R$) was investigated by specific surface area, water absorption and porosity, which changed with sintering temperatures. When the sintering temperatures increased from $975^{\circ}C$ to $1075^{\circ}C$, specific surface area and water absorption of the all samples decreased. In case of the sample with an equal sintering temperature, $E_R=3.0$ pellets had little influence on pore structure compared to the $E_R=2.0$ pellets. As a results, it was shown by SEM that facilitated formation of micro pores at $E_R=2.0$ pellets shrunk increasingly after sintering process. At $E_R=3.0$ and sintering temperature at $1025^{\circ}C$, optimum conditions of the porous porphyry porous pellets was found. Also, Escherichia coli removal efficiency of the silver-containing porphoyry porous pellets was measured for the feasibility as a antibacterial media. The antibacterial activity of prepared silver-containing sample was maintained above 90% for 40 days.

Manufacturing of Sintered Lightweight Aggregate using Paper Mill Sludge Ash (제지 슬러지 소각재를 이용한 소성 경량골재의 제조)

  • 문경주;김재신;소양섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.114-122
    • /
    • 2001
  • The purpose of this study was to manufacture sintered lightweight aggregate using paper sludge ash and to evaluate the qualities of the aggregate according to various mix proportions, conditions of pelletization and sintering. The paper sludge ash alone, due to its mineral and chemical compositions could not gain suitable expansion and strength. Hence, it was essential to add mineral additives such as clay, fly ash etc. The optimum muting ratio range determined in this study is as follows , paper sludge ash 30∼50 %, clay 30∼50 %, fay ash 0∼40 %, Paper sludge 0∼10% and hematite 2∼3 %(for manufacturing lightweight aggregate both for non-structural and structural concrete). It was possible to manufacture various lightweight aggregate whose dry specific gravity ranged about from 0.6 to 1.4 by using this optimum mixing ratio. From the test results of the qualities of aggregate, it showed that the 10% granules crushing value test and water absorption percentage ranged about 5∼10 ton and 10∼20%. Thus, it was favorably comparable to those of the imported aggregate. The manufactured lightweight aggregate could be used for structural concrete and non-structural concrete.

Characteristics of Concrete Sidewalk Block Manufactured Using Stone Powder Sludge and photocatalytic agent (석분슬러지와 광촉매제를 사용한 콘크리트 보도블록의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4237-4244
    • /
    • 2015
  • This study examined the efflorescence characteristics of a concrete sidewalk block manufactured using recycled stone powder sludge and photocatalytic generated by surface polishing during the sidewalk block manufacturing process. The study evaluated the characteristics of the sidewalk block in terms of its quality, based on the amount of stone powder sludge used, efflorescence, and further based on the mixing ratio and number of applications of the photocatalytic. The experimental results indicated that heavy metals such as lead, hexavalent chrome, cadmium, and mercury were not present in the concrete sidewalk block, thereby confirming the effectiveness of the recycled stone powder sludge. The optimum mixing ratio of used in the concrete sidewalk block (for satisfying KS standard values such as water absorption ratio and flexural strength) was found to be 20%. The concrete sidewalk block incorporating the stone powder sludge and photocatalytic exhibited a water absorption ratio of 5.4% and flexural strength of 5.2 MPa, thereby satisfying the quality standards. Additionally, when the photocatalytic was used, efflorescence did not occur even at the low temperature of $-5^{\circ}C$, and the by the sidewalk block was found to be 70% under normal conditions and 68% when subjected to an accelerated weathering test.

Physical Properties of Polymer Modified Mortar Containing FRP Wastes Fine Powder (폐FRP 미분말을 사용한 폴리머 시멘트 모르타르의 물성)

  • 황의환;한천구;최재진;이병기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.190-198
    • /
    • 2002
  • In this research the physical properties of polymer modified mortar containing pulverized FRP(Fiber-Reinforced Plastics) wastes fine powder as a part of fine aggregate were investigated. Styrene-butadiene rubber(SBR) latex, polyacrylic ester(PAE) emulsion and ethylene-vinyl acetate(EVA) emulsion were used as Polymer modifier. Polymer modified mortars containing FRP wastes fine powder were prepared with various FRP wastes fine powder replacement(5∼30 wt%) for fine aggregate and polymer-cement ratios(5∼20 wt%). The water-cement ratio, water absorption rates and hot water immersion test, compressive and flexural strengths of polymer modified mortars were tested and the results compared to those of ordinary portland cement mortar. As the results, compressive and flexural strengths of polymer modified mortar containing FRP wastes fine powder depend on the contents of FRP wastes fine powder, type and additional amounts of polymer modifier. Some of them showed higher compressive and flexural strengths than those of ordinary portland cement mortar. Especially, SBR-modified mortar showed the highest strengths properties among three types of polymer modifier. Also water absorption rates, compressive and flexural strengths of SBR-modified mortar were more superior than those of PAE or EVA-modified mortar. The optimum mix proportions of SBR-modified mortar was 20 wt% of polymer-cement ratio and 20 wt% of FRP wastes fine powder replacement. Otherwise heat cured polymer modified mortar accelerated the improvement of early compressive and flexural strengths.

Effects of whole wheat flour on the Rheological Properties of dough gassing power of yeast (전립분 첨가시 빵생지의 물성 및 이스트의 가스발생력에 미치는 영향)

  • 노삼현;이명렬
    • Culinary science and hospitality research
    • /
    • v.7 no.3
    • /
    • pp.179-191
    • /
    • 2001
  • The effects of whole wheat flour on the Rheological Properties of dough gassing power of yeast S.cerevisiae and breadmaking properties were studied. The blending ratios of whole wheat flour to bread making flour were 0, 25, 50, 75 and water absorption in the farinography increasedlinerly from 62.5%in 100% bread making flour and 77.5% in 100% whole wheat flour. The hardness and cohesiveness of dough prepared with optimum moisture content was constant regardless of the blending ratio of whole wheat flour. whole wheat flour had no effect on the total gas production or the internal gas content in the dough at a constant moisture level but had detrimental effect on the loaf volume. In a dough at the optimum moisture level, whole wheat flour increased the two former parameters sensory evaluation indicated that the replacement in the range of 25 to 50% with whole wheat flour at the optimum moisture level was acceptable

  • PDF

Quality Improvement of Recycled Fine Aggregate by Neutralization Reaction in Water (습식 중화반응에 의한 순환 잔골재의 품질 향상)

  • Kim, Ha-Suk;Kim, Jin-Man;Sun, Joung-Soo;Bae, Kee-Sun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.146-151
    • /
    • 2015
  • Recycled aggregate by the recycling construction waste has a lot of advantage such as the developing the alternative resource and protecting of environment. However, recycled aggregate is used as the low quality grade, because it is difficult to remove old mortar from aggregate. To use the recycled aggregate as high quality grade, it is important to develop the technology to produce the high quality recycled aggregate. To manufacture the high quality recycled aggregate, old mortar attached on the aggregates should be removed efficiently. Therefore, in this study, we suggested the optimum condition to remove old mortar effectively using sulfuric acid and low speed wet rotary mill for high quality recycled fine aggregate. The results shows that the recycled aggregate satisfy on the standards of KS F 2573 in density, absorption and solid volume, when adequate condition of sulfuric mole ratio and aggregate ratio are make.

Effects of Steam-Dried Hizikia fusiformis Powder on the Quality Characteristics in Wet Noodles (자건(煮乾) 톳 분말 첨가량을 달리한 생면의 품질 특성)

  • Oh, Young-Ju;Choi, Kwang-Soo
    • Culinary science and hospitality research
    • /
    • v.12 no.2 s.29
    • /
    • pp.206-221
    • /
    • 2006
  • To establish an optimum formula for processing wet noodles with steam-dried Hizikia fusiformis flour(SHF), it was incorporated into wheat flour by the ratio of 0, 1, 3, 5, 10 and 20% based on a flour weight. Application of 2% mehthylcelluose(MC) to improve the texture of noodles mixed with SHF was also attempted. Evaluation was performed on the dough rheology and wet noodle quality, such as cooking characteristics, mechanical texture properties, sensory value and shelf-life. Water absorption rate of the composite flour increased linearly as the content of SHF increased from 1% to 10%, and noodle sheet-formation was also acceptable in the same content level. The weight and volume of cooked noodles were decreased, and turbidity of soup was, if exceeding more than 5% of SHF, increased constantly. However, these problems could be remarkably resolved in SHF plus 2% MC. Texture profile analysis of cooked noodles showed an increase of hardness, gumminess, and chewiness up to 5% SHF. The results of sensory evaluation showed that cooked noodles containing 5% SDF were acceptable as much as wheat four noodles in terms of color, texture, taste and flavor. Based on cooking properties, rheological and sensory evaluation, addition of 5% SHF plus 2% MC was suggested to be suitable for making wet noodles, of which the shelf-life was estimated to be 8 days at $5^{\circ}C$.

  • PDF