• Title/Summary/Keyword: the mathematics curriculum revised in 2007

Search Result 62, Processing Time 0.019 seconds

Process Analysis on Mathematical Communication and Analogical Thinking through Trapezoid's Area Obtaining Activity (사다리꼴 넓이 구하기 활동에서 나타나는 수학적 의사소통과 유추적 사고 과정 분석)

  • You, Sanghwuy;Song, Sang Hun
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.2
    • /
    • pp.253-267
    • /
    • 2013
  • The newly revised mathematics curriculum of 2007 speaks of ultimate goal to develop ability to think and communicate mathematically, in order to develop ability to rationally deal with problems arising from the life around, which puts emphasize on mathematical communication. In this study, analysis on mathematical communication and analogical thinking process of group of students with similar level of academic achievement and that with different level, and thus analyzed if such communication has affected analogical thinking process in any way. This study contains following subjects: 1. Forms of mathematical communication took placed at the two groups based on achievement level were analyzed. 2. Analogical thinking process was observed through trapezoid's area obtaining activity and analyzed if communication within groups has affected such process anyhow. A framework to analyze analogical thinking process was developed with reference of problem solving procedure based on analogy, suggested by Rattermann(1997). 15 from 24 students of year 5 form of N elementary school at Gunpo Uiwang, Syeonggi-do, were selected and 3 groups (group A, B and C) of students sharing the same achievement level and 2 groups (group D and E) of different level were made. The students were led to obtain areas of parallelogram and trapezoid for twice, and communication process and analogical thinking process was observed, recorded and analyzed. The results of this study are as follow: 1. The more significant mathematical communication was observed at groups sharing medium and low level of achievement than other groups. 2. Despite of individual and group differences, there is overall improvement in students' analogical thinking: activities of obtaining areas of parallelogram and trapezoid showed that discussion within subgroups could induce analogical thinking thus expand students' analogical thinking stage.

  • PDF

An Analysis of Problem Posing in the 5th and 6th Grade Mathematics Textbooks and Errors in Problem Posing of 6th Graders (5, 6학년 수학교재의 문제만들기 내용 및 6학년 학생들의 문제만들기에서의 오류 분석)

  • Kim, Gyeong Tak;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.2
    • /
    • pp.321-350
    • /
    • 2013
  • The purpose of this study to analysis of problem posing in 5th and 6th grade mathematics textbooks and to comprehend errors in the problem posing activity of 6th graders in elementary school. For solving the research problems, problem posing contents were extracted from mathematics textbooks and practice books for the 5th and 6th grade of elementary school in the 2007 revised national curriculum, and they were analyzed, according to each grade, domain and type. Based on the analysis results, 10 problem posing questions which were extracted and developed, were modified and supplemented through a pre-examination, and a questionnaire that problem posing questions are evenly distributed, according to each grade, domain and type, was produced. This examination was conducted with 129 6th graders, and types of error in problem posing were analyzed using collected data. The implications from the research results are as follows. First, it was found that there was a big numerical difference of problem posing questions in the 5th and 6th grade, and problem posing questions weren't properly suggested in even some domains and types, because the serious concentration in each grade, type and domain. Therefore, textbooks to be developed in the future would need to suggest more various and systematic of problem posing teaching learning activity for each domain and type. Second, the 'error resulting from the lack of information' occurred the most in the problems that 6th graders posed, followed by the 'error in the understanding of problems', 'technical errors', 'logical errors' and 'others'. This implies that a majority of students missed conditions necessary for problem solving, because they have been used to finding answers to given questions only. For such reason, there should be an environment in which students can pose problems by themselves, breaking from the way of learning to only solve given problems.

  • PDF