• Title/Summary/Keyword: the high higher surface

Search Result 2,938, Processing Time 0.037 seconds

Physicochemical Properties of Powdered Green Teas in Korea (국내 시판 가루녹차의 이화학적 품질특성)

  • Lee, Lan-Sook;Park, Jong-Dae;Cha, Hwan-Soo;Lee, You-Min;Park, Jae-Woong;Kim, Sang-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • This study was conducted to compare the physicochemical properties of powdered green teas produced in Korea and Japan including particle size, color, chlorophyll, caffeine and theanine. The average particle size of Korean powered green tea ($14.63-25.39\;{\mu}m$) was similar to that of Japanese powdered green tea ($15.46-21.02\;{\mu}m$). The surface color of shade-cultivated Haenam Green Tea (HN-1) had the highest negative 'a' value, which represents 'green' color. When the TCD (total color difference value) was measured in the samples, HN-1 was most similar to the premium powdered green tea of Japan (JA-1). Domestic shade-cultivated powdered green teas had 1.5-2 times greater chlorophyll content than powdered green teas produced from plants that were not cultivated in the shade. The presence of chlorophyll a resulted in a higher intensity of green color than the presence of chlorophyll b. A significant negative correlation was also observed between the color and the chlorophyll a, chlorophyll b and total chlorophyll contents. Specifically, chlorophyll a had the greatest impact on the green color of powdered green tea. The content of catechins, caffeine and theanine in Korean powdered green teas ranged from 14.679-20.128, 1.496-3.237 and 0.926-1.977 g/100 g, respectively. The caffeine and theanine contents were high in shade-cultivated powdered green teas. Based on the above results, domestic powdered green teas cultivated under shaded conditions had a quality similar to that of medium-quality green teas produced in Japan, and the overall quality of Korean powdered green tea was poorer than that of Japanese powdered green tea.

Spatial Distribution of Urban Heat and Pollution Islands using Remote Sensing and Private Automated Meteorological Observation System Data -Focused on Busan Metropolitan City, Korea- (위성영상과 민간자동관측시스템 자료를 활용한 도시열섬과 도시오염섬의 공간 분포 특성 - 부산광역시를 대상으로 -)

  • HWANG, Hee-Soo;KANG, Jung Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.100-119
    • /
    • 2020
  • During recent years, the heat environment and particulate matter (PM10) have become serious environmental problems, as increases in heat waves due to rising global temperature interact with weakening atmospheric wind speeds. There exist urban heat islands and urban pollution islands with higher temperatures and air pollution concentrations than other areas. However, few studies have examined these issues together because of a lack of micro-scale data, which can be constructed from spatial data. Today, with the help of satellite images and big data collected by private telecommunication companies, detailed spatial distribution analyses are possible. Therefore, this study aimed to examine the spatial distribution patterns of urban heat islands and urban pollution islands within Busan Metropolitan City and to compare the distributions of the two phenomena. In this study, the land surface temperature of Landsat 8 satellite images, air temperature and particulate matter concentration data derived from a private automated meteorological observation system were gridded in 30m × 30m units, and spatial analysis was performed. Analysis showed that simultaneous zones of urban heat islands and urban pollution islands included some vulnerable residential areas and industrial areas. The political migration areas such as Seo-dong and Bansong-dong, representative vulnerable residential areas in Busan, were included in the co-occurring areas. The areas have a high density of buildings and poor ventilation, most of whose residents are vulnerable to heat waves and air pollution; thus, these areas must be considered first when establishing related policies. In the industrial areas included in the co-occurring areas, concrete or asphalt concrete-based impervious surfaces accounted for an absolute majority, and not only was the proportion of vegetation insufficient, there was also considerable vehicular traffic. A hot-spot analysis examining the reliability of the analysis confirmed that more than 99.96% of the regions corresponded to hot-spot areas at a 99% confidence level.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

Effective Biodegradation of Polyaromatic Hydrocarbons Through Pretreatment Using $TiO_2$-Coated Bamboo Activated Carbon and UV ($TiO_2$로 코팅된 대나무숯 및 UV의 전처리를 통한 다환방향족탄화수소의 효율적 생분해)

  • Ekpeghere, Kalu I.;Koo, Jin-Heui;Kim, Jong-Hyang;Lee, Byeong-Woo;Yi, Sam-Nyung;Kim, Yun-Hae;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • $TiO_2$-coated bamboo activated carbon has been prepared and utilized under UV irradiation as a pretreatment method for an effective biodegradation of the recalcitrant polyaromatic hydrocarbons (PAHs). The anatase $TiO_2$ was successfully coated on the bamboo activated carbon (AC) and it showed the highest photoactivity against methylene blue. In the absence of the PAHs-degrading bacteria PAHs having low molecular weight (i.e., naphthalene, acenaphthylene, acenaphthene, and fluorene) were degraded by 9.8, 76.2, 74.1, and 40.5%, respectively. Higher molecular weight PAHs, however, maintained high residual concentrations of PAHs (400-1,000 ${\mu}g$/L) after the same treatment. On the other hand, the overall concentrations of PAHs became lower than 340 ${\mu}g$/L when the pretreated PAHs were subjected to biodegradation by a PAH-degrading consortium for a week. Herein, phenanthrene, anthracene, fluoranthene, and pyrene were removed by 29.3, 61.4, 27.0, and 44.3%, respectively, indicating the facilitated potential biodegradation of PAHs. Activated carbon coated with $TiO_2$ appeared to inhibit growth of PAH degraders on the surface of AC, indicating planktonic degraders were dominantly involved in the PAH biodegradation in presence of the $TiO_2$-coated bamboo AC. It was proposed that an effective remediation technology for the recalcitrant PAHs could be developed when an optimum pretreatment process is further established.

Assessment of Physiological Activity of Entomopathogenic Fungi with Insecticidal Activity Against Locusts (풀무치에 대하여 살충활성을 보유한 곤충병원성 진균의 생리활성 평가)

  • Lee, Mi Rong;Kim, Jong Cheol;Lee, Se Jin;Kim, Sihyeon;Lee, Seok Ju;Park, So Eun;Lee, Wang Hyu;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.56 no.3
    • /
    • pp.301-308
    • /
    • 2017
  • Locusts, Locusta migratoria (Orthoptera: Acrididae) are periodical unpredictable agricultural pests worldwide and cause serious damage to crop production; however, little consideration has been given to the management of this pest. Herein, we constructed a locust-pathogenic fungal library and confirmed that some fungi could be used as resources for locust management. First, the entomopathogenic fungi were collected from sampled soils using a Tenebrio molitor-based baiting system. For the locust assay, a locust colony was obtained from the National Institute of Agricultural Science and Technology. A total of 34 entomopathogenic fungal granules, which were produced by solid cultures, were placed in the plastic insect-rearing boxes (2 g/box) and nymphs of locust were contained in the box. In 3-7 days, mycosis was observed on the membranous cuticles of the head, abdomen, and legs of locusts. In particular, Metarhizium anisopliae, M. lepidiotae, and Clonostachys rogersoniana exhibited high virulence against the locust. Given that the 34 isolates could be used in field applications, their conidial production and stability (thermotolerance) were further characterized. In the thermotolerance assay, Paecilomyces and Purpureocillium isolates had higher thermotolerance than the other isolates. Most of the fungal isolates produced ca. >$1{\times}10^8conidia/g$ on millet grain medium. In a greenhouse trial, the granular application of M. anisopliae isolate on the soil surface resulted in 85.7% control efficacy. This work suggests that entomopathogenic fungi in a granular form can be effectively used to control the migratory locust.

Water Quality Variations of pH, Electrical Conductivity and Dissolved Oxygen in Forest Hydrological Processes (산지(山地) 물순환과정(循環過程)에 있어서 산도(酸度), 전기전도도(電氣傳導度) 및 용존산소량(溶存酸素量)의 변화(變化))

  • Lee, Heon-Ho;Jun, Jae-Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.4
    • /
    • pp.634-646
    • /
    • 1996
  • This study was carried out to reveal the forest land effect on water purification in mountainous watersheds. Rainfall, throughfall, stemflow, soil and stream water were monitored by pH, electrical conductivity(EC), and dissolved oxygen(DO) in Daehan-Ri and Parkdal-Ri catchments. The results were summarized as follows; 1. Rainfall pH values of Parkdal-Ri and Daehan-Ri were 7.6 and 6.4, respectively. 2. Comparing stemflow and throughfall of Pinus densiflora with Pinus rigida, the pH values of Pinus densiflora were 4.32 and 4.22 and the pH of Pinus rigida were 3.34 and 4.81, respectively. The EC values of Pinus densiflora were $119.7{\mu}S/cm$ and $96.8{\mu}S/cm$ and EC of Pinus rigida were $230.0{\mu}S/cm$ and $82.0{\mu}S/cm$. 3. All pH values were decreased as the streamflow increased except long-term runoff in Daehan-Ri. The EC values also were increased as the streamflow increased, but EC of short-term runoff in Daehan-Ri was gradually decreased as the streamflow increased due to entrance of throughfall which has high EC values at the beginning of rainfall events. The DO concentrations of all experimental plots were elevated as the streamflow increased, because reaeration occurs at the surface of the stream as the increased discharge make turbulence. 4. pH of Stemflow and throughfall in Pinus densiflora were lower than in Quercus acutissima, but EC values were higher in Pinus densiflora. 5. Water purification was mostly influenced by forest soil in forest hydrological processes. 6. Stemflow and throughfall were more influenced by dry deposition and organic acid in crown and bark than those of wet deposition. During the stemflow and throughfall passed forest soil, these acidic stemflow and throughfall were neutralized, and stream water quality was neutral or slightly alkaline.

  • PDF

Effects of SiO2 Incorporation on Catalytic Performance and Physico-Chemical Properties of Iron-Based Catalysts for the Fischer-Tropsch Synthesis (Fischer-Tropsch 합성반응용 Fe계 촉매의 성능 및 물리화학적 특성에 미치는 SiO2 첨가효과)

  • Hyun, Sun-Taek;Chun, Dong Hyun;Kim, Hak-Joo;Yang, Jung Hoon;Yang, Jung-Il;Lee, Ho-Tae;Lee, Kwan-Young;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • The FTS(Fischer-Tropsch synthesis) was carried out over precipitated iron-based catalysts with or without $SiO_2$ in a fixed-bed reactor at $250^{\circ}C$ and 1.5 MPa. The catalysts with $SiO_2$ showed much higher catalytic activity for the FTS than those without $SiO_2$, displaying excellent stability during 144 h of reaction. The X-ray diffraction and $N_2$ physisorption revealed that the catalysts with $SiO_2$ showed enhanced dispersion of $Fe_2O_3$ compared with those without $SiO_2$. Also, the results of temperature-programmed reduction by $H_2$ showed that the addition of $SiO_2$ markedly promoted the reduction of $Fe_2O_3$ into $Fe_3O_4$ and FeO at low temperatures below $260^{\circ}C$. In contrast, surface basicity of the catalysts, which was analyzed by temperature-programmed desorption of $CO_2$, decreased as a result of $SiO_2$ addition. We attribute the high and stable performance of the catalysts with $SiO_2$ to the improved dispersion and reducibility by the $SiO_2$ addition.

Detection of Forest Fire Damage from Sentinel-1 SAR Data through the Synergistic Use of Principal Component Analysis and K-means Clustering (Sentinel-1 SAR 영상을 이용한 주성분분석 및 K-means Clustering 기반 산불 탐지)

  • Lee, Jaese;Kim, Woohyeok;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1373-1387
    • /
    • 2021
  • Forest fire poses a significant threat to the environment and society, affecting carbon cycle and surface energy balance, and resulting in socioeconomic losses. Widely used multi-spectral satellite image-based approaches for burned area detection have a problem in that they do not work under cloudy conditions. Therefore, in this study, Sentinel-1 Synthetic Aperture Radar (SAR) data from Europe Space Agency, which can be collected in all weather conditions, were used to identify forest fire damaged area based on a series of processes including Principal Component Analysis (PCA) and K-means clustering. Four forest fire cases, which occurred in Gangneung·Donghae and Goseong·Sokcho in Gangwon-do of South Korea and two areas in North Korea on April 4, 2019, were examined. The estimated burned areas were evaluated using fire reference data provided by the National Institute of Forest Science (NIFOS) for two forest fire cases in South Korea, and differenced normalized burn ratio (dNBR) for all four cases. The average accuracy using the NIFOS reference data was 86% for the Gangneung·Donghae and Goseong·Sokcho fires. Evaluation using dNBR showed an average accuracy of 84% for all four forest fire cases. It was also confirmed that the stronger the burned intensity, the higher detection the accuracy, and vice versa. Given the advantage of SAR remote sensing, the proposed statistical processing and K-means clustering-based approach can be used to quickly identify forest fire damaged area across the Korean Peninsula, where a cloud cover rate is high and small-scale forest fires frequently occur.

Presence of Leukemia-maintaining Cells in Differentiation-resistant Fraction of K562 Chronic Myelogenous Leukemia (만성 골수성 백혈병 K562세포의 분화 내성 분획에서 백혈병 유지 세포의 동정)

  • Lee, Hong-Rae;Kim, Mi-Ju;Ha, Gahee;Kim, So-Jung;Kim, Sun-Hee;Kang, Chi-Dug
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.197-206
    • /
    • 2013
  • The present study investigated whether leukemia-maintaining cells reside in a differentiation-resistant fraction using a megakaryocytic differentiation model of K562 cells. Treatment with phorbol-12-myristate-13-acetate (PMA) significantly inhibited the colony-forming efficiency of the K562 cells. At a PMA concentration of 1 nM or higher, colony was not formed, but approximately 40% of K562 cells still survived in soft agar. Approximately 70% of colony-forming cells that were isolated following the removal of PMA after exposure to the agent were differentiated after treatment with 10 nM PMA for 3 days. The differentiation rate of the colony-forming cells was gradually increased and reached about 90% 6 weeks after colony isolation, which was comparable to the level of a PMA-treated K562 control. Meanwhile, imatinib-resistant variants from the K562 cells, including K562/R1, K562/R2, and K562/R3 cells, did not show any colony-forming activity, and most imatinib-resistant variants were CD44 positive. After 4 months of culture in drug-free medium, the surface level of CD44 was decreased in comparison with primary imatinib-resistant variants, and a few colonies were formed from K562/R3 cells. In these cells, Bcr-Abl, which was lost in the imatinib-resistant variants, was re-expressed, and the original phenotypes of the K562 cells were partially recovered. These results suggest that leukemia-maintaining cells might reside in a differentiation-resistant population. Differentiation therapy to eliminate leukemia-maintaining cells could be a successful treatment for leukemia if the leukemia-maintaining cells were exposed to a differentiation inducer for a long time and at a high dose.

Effect of Maturity at Harvest on the Changes in Quality of Round Baled Rye Silage (수확시 숙기가 호밀 라운드베일 사일리지의 품질변화에 미치는 영향)

  • Kim, J.G.;Chung, E.S.;Seo, S.;Kang, W.S.;Ham, J.S.;Kim, D.A.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This experiment was conducted to evaluated the effect of maturity at harvest on the changes in quality of round baled rye silage at forage experimental field of Grassland and Forage Crops Division, National Livestock Research Institute, RDA, Suwon in 1998. The experimental design was a split-plot design with three replications. The main plots were three different harvest stages : boot, heading and flowering stages, and the subplots were days after ensiling : 1, 2, 3, 5, 10, 30, 45, and 60 days. The wilting period of boot, heading and flowering stages were 1, 0.5 and 0.5 days, respectively. The final pH of rye silage was higher in the order of flowering, boot and heading stages. And pH of flowering stage began to change at early fermentation period, but that of boot and heading stages was delayed 1~2 days. Ammonia-N content of boot stage was highest. and that was increased as fermentation progressed. But Ammonia-N of heading stage was decreased to 30 days. then that was increased after 45 days fermentation. Among fermentation periods, inside temperature of deep place was not affected by external temperature. And that of deep place was increased to 3$0^{\circ}C$ at early fermentation. then decreased as fermentation progressed. However surface temperature was affected by external temperature after 10 days. Acetic acid content was not changed with 5 days by harvest stages, but that of boot stage was increased after 10 days. Butyric acid of boot stage was increased after 5 days. but that of heading stage was increased after 10 days. However lactic acid was increased from 1~2% to 6~8%. Lactic acid bacteria (LAB) of heading and flowering stages were highest at 5 days fermentation, and that of boot stage was highest at 10 days fermentation. The results of this study indicate that fermentation of round baled rye silage occur within 5 days. Therefore, any modification should be applied with an 5 days for high quality of round baled rye silage.

  • PDF