• Title/Summary/Keyword: the equivalent slenderness ratio

Search Result 15, Processing Time 0.017 seconds

Seismic response of foundation-mat structure subjected to local uplift

  • El Abbas, Nadia;Khamlichi, Abdellatif;Bezzazi, Mohammed
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.285-304
    • /
    • 2016
  • The effects of large rotations and p-delta on the dynamic response of a structure subjected to seismic loading and local uplift of its foundation were analyzed in this work. The structure was modeled by an equivalent flexible mat mounted on a rigid foundation that is supported either by a Winkler soil type or a rigid soil. The equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-mat system where the structure was idealized as a single-degree-of-freedom. The obtained nonlinear coupled system of ordinary differential equations was integrated by using an adequate numerical scheme. A parametric study was performed then in order to evaluate the maximum response of the system as function of the intensity of the earthquake, the slenderness of the structure, the ratio of the mass of the foundation to the mass of the structure. Three cases were considered: (i) local uplift of foundation under large rotation with the p-delta effect, (ii) local uplift of foundation under large rotation without including the p-delta effect, (iii) local uplift of foundation under small rotation. It was found that, in the considered ranges of parameters and for moderate earthquakes, assuming small rotation of foundation under seismic loading can yield more adverse structural response, while the p-delta effect has almost no effect.

A Study on Buckling Strengths for Steel Compression Members at High Temperatures (고온 강구조 압축재의 좌굴 강도에 관한 연구)

  • Choi, Hyun-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.73-81
    • /
    • 2019
  • The high-temperature properties of mild steels were studied by comparing the test results of Kwon and the yield strength, tangent modulus predicted by the design provisions of ASCE and Eurocode(EC3). The column strengths for steel members at high temperatures were determined by the elastic and inelastic buckling strengths according to elevated temperatures. The material properties at high temperatures should be used in the strength evaluations of high temperature members. The buckling strengths obtained from the AISC, EC3 and approximate formula proposed by Takagi et al. were compared with ones calculated by the material nonlinear analysis using the EC3 material model. The newly simplified formulas for yield stress, tangent modulus, proportional limit and buckling strength which were proposed through a comparative study of the material properties and buckling strengths. The buckling strengths of proposed formulas were approximately equivalent to ones obtained from the formulas of Takagi et al. within 4%. They were corresponded to the lower bound values among the buckling strengths calculated by the design formulas and inelastic buckling analysis.

Evaluation of Compressive Strength of Assembled Column System Reinforced with Cross-Arms and Stayed Struts (수평재 및 사재로 보강된 조립기둥시스템의 압축강도 평가)

  • Kim, Kyung Sik;Park, Hyun Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2169-2179
    • /
    • 2013
  • The compressive strengths of simply supported columns may be significantly increased by reinforcing them with an assemblage of cross-arms and stayed struts connecting both ends of the columns and the cross-arm members. The purpose of the stayed struts and cross-arms is to introduce partial restraints against translation and rotation, thereby decreasing the effective buckling length of the column. In this study, buckling strengths of the assembled column system have been quantitatively evaluated from the theoretical methods based on both the equivalent spring model and the stiffness matrix formulation. And the results were compared with those from elastic/inelastic analysis using a finite element analysis package program, ABAQUS, for verification purpose. Expected compressive strength curves have been proposed for the assembled column system as a function of slenderness ratio of the simply supported column.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Development of Nonlinear Analysis Technic to Determine the Ultimate Load in Electric Transmission Tower (송전철탑의 극한하중 도출을 위한 비선형해석 기법)

  • Kim, Woo Bum;Choi, Byong Jeong;Ahn, Jin Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.389-398
    • /
    • 2008
  • The current design practice of electric transmission tower is based on the allowable stress design. However, it is difficult to find the cause behind a transmission tower's collapse by the above design approach as the collapse is caused by large secondary deformations based on and geometrical nonlinear behavior.influence factor for the nonlinear behavior is mainly residual stress, initial imperfection and end restraints on members. In this study, the necessity of the nonlinear analysis is examined through the comparison between elastic ana the nonlinear analysis, a new analytical method (equivalent nonlinear analysis technique) is proposed. To confirm the reliability of the proposed method, the computed ultimate load of the transmission tower using the method was compared with that of the nonlinear finite element analysis. Effects of parameters, such as compressive force and the slenderness ratio of the brace member on the main post member, were investigated. The effective member length according to influential parameters was formulated in table form for practical purposes.