• Title/Summary/Keyword: the criteria of aural discomfort

Search Result 3, Processing Time 0.02 seconds

A study on the optimum cross-section design that satisfies the criteria of aural discomfort in Honam high speed railway tunnel (이명감 특성을 고려한 호남고속철도 터널단면 설정에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.19-36
    • /
    • 2007
  • When the trains runs at a high speed in the tunnel, passengers feel a pain in the ear that fast pressure fluctuation inside the tunnel being delivered with pressure fluctuation inside the passenger car. These phenomena are called "aural discomfort". Aural discomfort increase the passengers' uncomfort so that it is decreased a service level and serious case, it is able to damage the ear of the passenger. therefore aural discomfort must be considered the high-speed railroad tunnel cross-section design. To solve the problem of aural discomfort in a railway tunnel, some countries have standards on aural discomfort. It has been studied that different countries have different standards on aural discomfort. For that reason, the criteria of aural discomfort was reviewed through the standards of Kyungbu HSR line and different countries in this paper. And then Numerical Analysis of the Characteristics with tunnel cross-section change has been used for the selection of the optimum cross-section of Honam. The numerical analysis results were compared to field test results in order to verifying the reliability of the numerical analysis.

  • PDF

Study of the Air-tightness Requirement Decisions of GTX Trains (GTX 차량기밀도 요구성능 도출에 관한 연구)

  • Yun, Su-hwan;Cho, Yong-hyeon;Hong, Seok-woo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.513-521
    • /
    • 2015
  • When a GTX travels through a deep-level underground tunnel at a speed of 180km/h, ear-discomfort in passengers due to the pressure wave generated could be an issue due to the small cross-sectional area. Therefore, appropriate pressure-tightness values for GTX trains must be secured as a countermeasure. In this paper, a 1D numerical analysis was conducted to determine the pressure-tightness coefficient which allows a pressure change meet the criteria. The pressure transients in a tunnel and in a passenger car are predicted considering an A-line underground tunnel with a length of 37km and its operation schedule. The required pressure-tightness of the car is predicted to be three seconds and 6 seconds respectively for a single track and a double- track tunnel to prevent aural discomfort in passengers. The result of this study are expected to serve as useful information to those involved in the development of various solutions to improve air-tightness of GTX passenger cars.

Analysis of Aerodynamic Characteristics for determination of tunnel cross section in Honam high speed railway (호남고속철도 터널 단면선정을 위한 공기역학적 특성 분석)

  • Kim, Seon-Hong;Moon, Yeon-Oh;Seok, Jin-Ho;Jo, Hyeong-Jae;Yoo, Ho-Sik;Choi, Jeong-Hwan;Rim, Hyoung-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.313-336
    • /
    • 2007
  • Unlike a conventional railway system, a high-speed rail system experiences various aerodynamic problems in tunnel sections. Trains running at a high speed in a small tunnel, when compared with the open field, face significant air pressure, resulting in reduced operating stability and fast change in pressure inside the tunnel. These phenomena further cause some unexpected problems such as the passengers onboard feeling an aural discomfort and an impulsive noise at the tunnel exit. To solve these problems, this paper introduces analysis of aerodynamic characteristics for determination of tunnel cross section. The optimum cross-section that satisfies the criteria of aural discomfort was reviewed through lots of numerical simulation analysis. Also, the pressure inside the passenger car of a train operating on Kyungbu HSR line was measured, and the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 Tunnel. At the same time, a test of train operation model was performed and then the measurement results and test results were compared to verify that various parameters used as input conditions for the numerical simulations were appropriate.

  • PDF