• Title/Summary/Keyword: the compression anchors

Search Result 26, Processing Time 0.026 seconds

Development of Removable-Strand Compression Anchor (압축형 제거 앵커의 개발 및 성능 평가)

  • 김낙경;김성규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.339-346
    • /
    • 2001
  • For temporary excavation support in private land area, the strand of ground anchor should be removed In order to get permission to install anchors. The extractable or removable-strand compression anchor system was developed and evaluated by a series of pull-out load tests. Anchor pull-out tests were performed on seven instrumented full-scale low-pressure grouted anchors installed in weathered soil at the Geotechnical Experimentation Site at Sungkyunkwan University, Four anchors are the compression type anchors and three are the tension anchors. Performance test, creep test, and long term relaxation test were performed and presented. Load distributor was developed in order to distribute large compressive stresses in grout.

  • PDF

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

Pullout Behavior of Typical friction Anchors and Development of Design Method (앵커 형식별 인발거동과 설계법 개발)

  • 송일준;김가야;홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.43-51
    • /
    • 2003
  • The resistance mechanism of anchor changes according to the types of anchor. Friction anchors are classified into tension and compression types. In this study, the characteristics and mechanism of pullout are analysed, and the design method of anchor and computer program for design are developed through compression test results of anchor body grout. The characteristics of compression anchor, compared with tension anchor, are summarized mainly as follows: (1) The effect of progressive failure of compression anchor body are much smaller than those of tension anchor during pullout of anchor: (2) The skin friction resistance is increased by Possion effect of grout (anchor body) during pullout of compression anchor.

A Case Study on Individually Controlled Pull-out Test for Ground Anchor (지반앵커의 인발시험을 위한 개별제어 긴장장치의 적용 사례 연구)

  • Shin, Hyeon-Cheol;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.545-552
    • /
    • 2008
  • To insure the quality and safety of ground anchors, pull-out test of anchor has to be done. In the individually controlled pull-out test system, pull-out device is used to introduce the same pull-out force to individual tendon that has a different length and a deflection. That is, that device has a separate pull-out oil jack to each tendon, thus the pull-out length of each jack is not the same, but that device introduces each tendon to the same pull-out force. In this study, the in-situ pull-out tests for the compression anchors were performed and its test results were analysed and compared to the results of center hole pull-out tests. In the case of pulling out each tendon using the individually controlled pull-out test device, the pull-out forces were distributed to a individual tendon. That device is excellent one that can solve the cause of unequal pull-out forces of each tendon appearing in the manufacture process and construction of anchors, and unequal pull-out forces due to the deferent length.

  • PDF

Applicability of the Tensile Test Performance Evaluation Baseline for Ground Anchors (지반앵커에 대한 인장시험 성능평가 기준선의 적용성 고찰)

  • Kim, Dae Gun;Park, Tae Kwang;Park, Lee Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.75-84
    • /
    • 2022
  • Currently, tension ground anchors are divided into temporary and permanent based on their purpose and period of use, and their performance evaluations are presented separately. Therefore, applying the current performance evaluation's upper and lower limits to practice seems reasonable. However, because compression ground anchors have been mainly used as permanent, performance evaluation corresponding to permanent is conducted without distinction between temporary and permanent. This evaluation is a strict standard for ground anchors used as temporary, including the removal type. Because of examining the existing performance evaluation for the compression ground anchor, the lower limit can be applied without distinguishing between the temporary and permanent. However, the upper limit should be presented separately for the temporary and permanent. In applying the upper limit, it is necessary to adjust the upper limit of the anchor considering the anchored ground condition (rock or soil), the period of use, and particularly whether the load-displacement curve maintains the elastic state.

Load Transfer Mechanism of Hybrid Model of Soil-nailing and Compression Anchor (쏘일네일링과 앵커가 결합된 하이브리드 공법의 하중전이 메커니즘)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Han, Shin-In;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • The load transfer mechanism of hybrid model of soil-nailing and compression anchor is studied in this paper. The hybrid model is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. It can make active behavior of skin friction by applying the pre-stress. In this paper, the load transfer mechanisms of soil-nailings, compression anchors, and hybrid models, respectively, are obtained from skin friction theory and load transfer theory. Field pullout tests are performed to identify the load transfer mechanism and experimental results are compared with analytical solution. In case of soil-nailings, the tension load is transferred from face to tip, however, in case of compression anchors, the compression load is transferred from tip to face. The experimental behavior of the hybrid model is similar to that of compression anchor when only pre-stress is applied. If the pullout test is performed by simultaneously pulling out the anchor and the nail, the compression load is dominant at the tip and tension load is dominant at the face. The load transfer mechanism of the hybrid model shows the combined behavior of soil-nailings with compression anchors.

Experimental Study on Pullout Behavior of Composite Type Ground Anchor (복합형 앵커의 인발거동에 관한 실험적 연구)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.143-155
    • /
    • 2008
  • Ground anchors are classified depending on the kind of stress the grout is subjected to. If the grout material is subjected to tension then it is classified as tension anchor while when the grout material is subjected to compression it is classified as compression anchor. In this study a composite type anchor that possesses both the tension and compression mechanism was developed. For field tests, strain gauges were installed inside the anchor body in soft: soil. From the strain monitoring results, pull-out resistance mechanism that possesses both tension and compression strain was seen.

Development of Composite Tension.Compression Anchor System based on the pull out resistance characteristics of Ground Anchor (지반앵커의 인발저항 특성에 따른 인장.압축 복합 시스템 개발)

  • Yeom, Ho-Hyeong;Im, Jong-Chul;Hong, Seok-Woo;Kim, Chul-Ung;Shin, Chul-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.788-795
    • /
    • 2005
  • In this study, the progressive failure and creep of the traditional ground anchor structure were decreased and a new ground anchor that can attain the required pull-out resistance even in soft sandy soils with low confining pressure was developed. Ground anchors are classified depending on the kind of stress the grout is subjected. If the grout material is subjected to tension then it is classified as tension anchor while when the grout material is subjected to compression it is classified as compression anchor. The ground anchor that possesses both the tension and compression mechanism mentioned above is known as composition anchor. It is the objective of this study to develope this type of composition anchor. The structure of the newly developed ground anchor was presented. Pull-out test in different types of soil and the behaviour during Pull-out test was also presented.

  • PDF

Pullout Capacity of Ground Anchors in Weathered Soil (풍화토 지반에 설치된 앵커의 인발 특성)

  • 김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.231-239
    • /
    • 2001
  • 건설 현장에서 널리 사용되고 있는 그라운드 앵커의 거동 특성을 연구하기 위하여 계측기를 부착한 일곱 개의 그라운드 앵커를 국내에 널리 분포되어 있는 화강 풍화토 지반인 $\bigcirc$$\bigcirc$$\bigcirc$대학교 지반 시험장에 설치하여 인발 시험을 수행하였다. 저압 그라우트 인장형 앵커 3개와 압축형 앵커 4개를 시험하였고, 시험은 AASHTO 규정에 의거한 인발시험, 크리프시험, 장기거동시험을 수행하였다. 시험 결과로부터 화강 풍화토 지반에 설치된 저압그라우트 직선형 앵커의 지반과의 마찰계수, 크리프 변형율, 하중감소 특성을 평가하였다.

  • PDF

Application of Compression dispersion Anchor Using Auto back Equipment (자동 인장 장치에 의한 압축 분산형 앵커의 적용성)

  • Lee Song;Park Sang Kook;Jeong Young Eun;Lee Sung Won
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.994-1000
    • /
    • 2004
  • It is growing the application of the removal ground anchor with tension force for earth retaining constructions in the downtown. Nowadays, we can find the compression dispersion anchor on many site. But, it is occur some probelems in behabior of anchors because of impossible to tense p.c strand uniformly with existing equipment due to different length of p.c strand. So we tried to tense each p.c strand uniformly with auto back equipment in-situ test. This study compared and analyzed in-situ test results of an existing equipment with those of auto back equipment by appling elastic theory. As a result of the test, It has been proved that differences of tension force in the existing equipment increases with increasing the number of p.c strands. This can cause the ultimate failure of the concentrated p.c strand and the shear failure of ground. So it has been proved that auto back equipment is necessary.

  • PDF