• 제목/요약/키워드: the biochemical Encoding

검색결과 98건 처리시간 0.02초

코쿠리아 광안리엔시스의 제라닐제라닐 피로인산염 합성 효소의 클로닝과 대장균에서 공발현을 통한 효소 활성에 관한 연구 (Cloning of Geranylgeranyl Pyrophosphate Synthase (CrtE) Gene from Kocuria gwangalliensis and Its Functional Co-expression in Escherichia coli)

  • 서용배;김군도;이재형
    • 생명과학회지
    • /
    • 제22권8호
    • /
    • pp.1024-1033
    • /
    • 2012
  • Kocuria gwangalliensis로부터 카로티노이드 생합성 경로의 첫 번째 단계 기질인 geranylgeranyl pyrophosphate (GGPP)를 생합성하는 GGPP synthase (CrtE)를 암호화하고 있는 crtE를 클로닝 하여 이를 KgGGPP로 명명하였다. 기존 세균에서 밝혀진 GGPP synthase의 아미노산 서열을 NCBI에서 검색하여 KgGGPP synthase의 아미노산 서열과 비교한 결과 Kocuria rhizophila와 59.6%의 상동성을 가지는 것을 확인하였다. crtE 유전자를 대장균에서 발현 시키기 위하여 pCcrtE 재조합 DNA를 구축하였고, 이를 대장균에서 발현시킨 결과 약 41 kDa의 재조합 단백질이 과발현 됨을 확인 할 수 있었으며, 이 단백질은 기존 세균에서 밝혀진 GGPP synthase와 유사한 분자량을 가지고 있다는 것을 알 수 있었다. CrtE 재조합 단백질의 활성을 분석하기 위하여 대장균 내에서 라이코펜의 생합성을 유도 하였다. 대장균의 경우 메발론산 경로를 통하여 FPP와 IPP를 생합성 하지만 crtE, crtB, crtI 유전자가 없기 때문에 라이코펜을 생합성 하지는 못한다. 대장균 내에서 라이코펜의 생합성을 위해서는 crtE, crtB, crtI 유전자의 발현이 필수적으로 요구되기 때문에 crtB, crtI 유전자의 경우는 P. haeundaensis에서 유래한 유전자를 이용하여 pRScrtBI 재조합 DNA를 구축하여 그 발현을 유도하였다. 상기 두 재조합 DNA를 대장균에서 공발현 시켰으며, HPLC 분석법을 이용하여 대장균 내에서 라이코펜의 생산 유무에 따른 KgGGPP synthase의 활성을 분석하였다.

국내에서 분리된 Streptomycin 저항성 Pseudomonas syringae pv. actinidiae Biovar 3 균주에서 rpsL 유전자의 돌연변이 (Mutation of rpsL Gene in Streptomycin-Resistant Pseudomonas syringae pv. actinidiae Biovar 3 Strains Isolated from Korea)

  • 이영선;김경희;고영진;정재성
    • 식물병연구
    • /
    • 제28권1호
    • /
    • pp.26-31
    • /
    • 2022
  • Pseudomonas syringae pv. actinidiae (Psa)는 키위에 세균성 궤양병을 일으키는 병원균이다. Psa 균주는 유전적 및 생화학적 특징에 따라 5개의 biovar로 나누어진다. 그중 biovar 2와 3이 국내에서 발견되어 광범위한 피해를 주고 있다. Psa를 방제하는 효율적인 방법 중 한가지는 streptomycin과 같은 항생제를 사용하는 것이다. 그러나, 이 항생제에 저항성을 갖는 균주가 국내에서 분리되었고, 선행 연구에서 biovar 2 균주의 저항성이 strA-strB 유전자에 의한 것으로 밝혀졌다. 본 연구에서는 Psa biovar 3 균주에서 streptomycin 저항성의 분자적 기작을 밝히고자 하였다. 실험실에서 선발된 streptomycin 저항성 균주의 리보솜 단백질 S12를 암호화하는 유전자인 rpsL의 염기서열을 결정한 결과, 43번째 또는 88번째 코돈에서 자연발생적 점 돌연변이가 일어난 것을 확인하였다. 한편, 두 곳의 키위 과수원에서 분리된 4개의 streptomycin 저항성 biovar 3 균주에서는 민감성 균주에서 AAA인 rpsL의 코돈 43이 AGA로 단일 염기 치환이 일어났고, 이는 아미노산을 lysine에서 arginine으로 변화시키게 된다. 국내에서 발견된 biovar 3 균주 모두의 저항성 기작은 rpsL 유전자의 돌연변이에 기인하였다.

Bacillus속 세균 유래 박테리오신의 특성과 응용 (Biochemical Properties and Application of Bacteriocins Derived from Genus Bacillus)

  • 이지영;강대욱
    • 생명과학회지
    • /
    • 제33권1호
    • /
    • pp.91-101
    • /
    • 2023
  • 박테리오신은 리보솜에서 합성된 항균 펩타이드로, 박테리아에 의해 생성되어 유사하거나 밀접한 관련이 있는 박테리아 균주의 성장을 억제한다. 니신이 처음 발견된 이래로, 독특한 구조와 다양한 항균활성 방식을 가진 많은 박테리오신들이 기술되었고, 생산, 분비, 면역을 암호화하는 유전자들이 보고되었다. 니신은 치즈와 액체 달걀, 소스, 통조림 식품에 적용되는 박테리오신 중 하나이다. 많은 Bacillus 속 박테리오신들은 변역 후 변형된 펩타이드인 란티바이오틱스에 속한다. 다른 속의 Bacillus는 또한 많은 다른 비-란티바이오틱스 박테리오신을 생산한다. Bacillus 속 박테리오신은 때때로 더 넓은 항균 스펙트럼 때문에 더욱 중요해지고 있다. 박테리오신은 식품 및 제약 산업에서 식품 부패 및 병원성 세균 증식을 방지하기 위한 매력적인 화합물로 간주된다.박테리오신은 식품계에서 다양한 방식으로 생물학적 방부제로 사용될 수 있다. 생물 보존은 미생물 및/또는 그 대사산물을 사용하는 식품의 유통기한 연장 및 안전성 향상을 의미한다. 새로운 항균 화합물에 대한 수요는 식품 미생물학적 안전성을 향상시킬 수 있는 새로운 기술에 대한 큰 관심을 가져왔다. 박테리오신의 응용은 식품에서 인간의 건강으로 확대되고 있다. 오늘날 많은 연구자들은 박테리오신에 대한 관심을 식품보존에서 감염과 항생제 내성 질병을 유발하는 박테리아의 처리로 전환하고 있는 추세이다. 박테리오신 연구의 이 흥미로운 새로운 시대는 의심할 여지없이 새로운 발명과 새로운 응용으로 이어질 것이다. 이 리뷰에서 우리는 Bacillus 속에 의해 생산되는 박테리오신의 다양한 특성과 응용을 요약한다.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2008년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

정량 PCR을 이용한 비위생 매립지의 특정 세균 및 효소 유전자와 수질인자와의 상관관계 평가 (Comparative Assessment of Specific Genes of Bacteria and Enzyme over Water Quality Parameters by Quantitative PCR in Uncontrolled Landfill)

  • 한지선;성은혜;박헌주;김창균
    • 대한환경공학회지
    • /
    • 제29권8호
    • /
    • pp.895-903
    • /
    • 2007
  • 매립지를 직접 생태학적으로 모니터링하는 방법을 개발하고자, 매립지 내의 생화학적 반응에 관여하는 세균들과 효소의 양을 정량함과 동시에 지하수 수질인자와 상호 연관성을 조사하여 생태학적 인자와의 연계 이용 가능성을 평가하였다. 이를 위하여 4개의 매립 종료된 비위생 매립지(천안(C), 원주(W), 논산(N), 평택(P) 매립지)에서 계절별로 지하수 시료를 채취하였으며 동시에 16S rDNA 방법을 사용하여 미생물 다양성을 분석하였다. 이를 기반으로, 매립지에서 주로 발견되는 세균과 효소를 대표하는 유전자를 정량하기 위한 특이 프라이머 쌍을 제작하였으며 상관계수에 기초하여 수질인자와 유전자 지표 인자간의 정량적 관련성을 비교하였다. 그 결과 DSR(황환원 세균) gene과 BOD(생화학적 산소요구량)사이의 상관관계는 0.8 이상인데 반해 NSR(질산화 세균-Nitrospira sp.) gene과 질산성 질소는 0.9 이상이었다. 안정화지표(BOD/COD)와 MTOT(메탄 산화 세균), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) gene들은 0.8 이상의 상관관계를 가졌으나 3가 철과 Fli(Ferribacterium limineticm) gene은 0.7로 낮았다. MTOT gene의 경우, BOD/COD과의 관련성이 100%에 가깝게 높았다. 또한, 혐기성 유전자들(nirS-아질산 환훤효소, MCR, Dde, DSR)과 DO 역시 0.8 이상으로 나타나 일반적인 매립지 혐기성 반응들이 DO에 크게 의존함을 보였다. 결론적으로 분자생물학적 조사와 수질인자가 높은 상호연관성이 있었으며 real-time PCR이 전통적인 모니터링 인자들과 동시에 상호 보완적으로 모니터링에 사용됨으로써 매립지안정화 및 주변 영향을 평가하는데 효율적으로 사용 될 수 있음을 알 수 있었다.

페닐케톤뇨증의 효소치료 개발을 위한 phenylalanine ammonia-lyase 및 유전자 변이형의 생화학적 특성 (Biochemical Characterizations of Phenylalanine Ammonia-Lyase and its Mutants to Develop an Enzymatic Therapy for Phenylketonuria)

  • 김우미
    • 생명과학회지
    • /
    • 제19권9호
    • /
    • pp.1226-1231
    • /
    • 2009
  • 페닐케톤뇨증은 상염색체 열성으로 유전되며, phenylalanine-4-hydroxylase (PAH, EC 1.14.16.1)의 돌연변이에 의해 효소 불활성화를 초래하는 질환이다. 최근 유전자 재조합된 phenylalanine ammonia-lyse (PAL)에 의한 효소 대체요법이 보고된 바 있다. 이 효소를 경구용 약제로 개발하기 위하여 효소활성을 나타내기 위한 최적 조건들을 알아야 하며, 위장관내 소화효소에 의해 분해되지 않는 구조적 안정성을 유지하여야 한다. 따라서 본 연구에서는 PAL의 생화학적 특성을 규명하고, 이를 바탕으로 위장관내 소화효소로부터 저항할 수 있는 변이형들을 만들고자 하였으며, 이러한 구조적 변화를 통하여 효소의 특이 활성도가 유지될 수 있는지를 보고자 하였다. PAL의 특이 활성도를 측정하였고, 효소 활성을 나타내기 위한 최적 pH, 온도 변화에 따른 효소 활성도, 단백분해효소에 의한 활성도 변화를 측정하였다. PAL의 Vmax는 페닐알라닌과 티로신에 대하여 각각 1.77, $0.47{\mu}mol$/ mg x protein로 나타났으며, Km은 페닐알라닌에 대하여 $4.77{\times}10^{-4}\;M$,티로신에 대하여 $4.37{\times}10^{-4}\;M$로 나타났다. 또한 pH 8.5에서 가장 높은 활성을 나타내었는데, 이는 소장의 평균 pH와 유사하다. PAL의 효소 활성은 $-80^{\circ}C$에서 5개월 동안 유지되었으며, $4^{\circ}C$에서 1주일 동안 93.4%의 활성을 유지하였다. PAL은 키모트립신에 의해 쉽게 분해되었으며, 이보다 약한 정도로 트립신, elastase, carboxypeptidase A, B에 의해 분해 되었다. 췌장 소화효소에 대한 저항성을 증가시키기 위하여 트립신, 키모트립신 절단부위 아미노산을 변이시켜 유전자 변이형을 만들었고, 효소 활성도를 측정하였다. 6개의 유전자 변이형은 모두 저하된 효소 활성도를 나타내었는데, Y110H는 0.084, Y110A와 Y110L은 0, R123A는 0.11, R123H는 0.074, R123Q는 0.033으로 나타났다. 이러한 결과는 트립신 및 키모트립신 절단부위 아미노산이 PAL의 효소 활성에 필수적인 역할을 하고 있음을 나타낸다. PAL 변이형은 단백분해작용으로부터 보호할 수 있는 전처치 방법이지만, 페닐알라닌을 효과적으로 저하시키기 위해서 효소활성을 유지할 수 있는 다음 단계의 처치가 필요하다.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2003년도 추계학술대회
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

E. coli 유래 pheA 유전자의 되먹임제어 저항성 돌연변이의 구축과 그 단백질의 생화학적 특성 연구 (Development of the feedback resistant pheAFBR from E. coli and studies on its biochemical characteristics)

  • 카오틴팟;이상현;홍광원;이성행
    • 미생물학회지
    • /
    • 제52권3호
    • /
    • pp.278-285
    • /
    • 2016
  • E. coli의 PheA 단백질은 chorismate mutase and prephenate dehydratase (CMPD) 활성을 가지며 마지막 산물인 페닐알라닌에 의하여 되먹임제어가 되는 생합성 경로의 주요 조절 효소 중의 하나이다. 그러므로, 이 PheA 단백질은 필수 아미노산 중의 하나인 페닐알라닌의 대량 생산에 이용하기 위한 단백질 공학의 타겟이 될 수 있다. 이러한 목적으로 PheA 단백질의 마지막 생산물인 페닐알라닌에 의한 되먹임저해 저항성 유전자원을 선별하였다. 이 유전자의 산물인 $PheA^{FBR}$은 118번째 류신이 페닐알라닌으로 치환되었고, 기질인 prephenate에 대한 친화도가 야생주단백질과 비교하여 약 3.5배 정도 높았다. $PheA^{FBR}$은 세포내에서 축척되어져 되먹임저해를 하는 페닐알라닌 농도에서(약1 mM와 10 mM)에서도 50%와 40%의 활성을 유지 하고 있었고, 페닐알라닌 존재하에서 기질의 결합 성향이 협동적(cooperative) 모드에서 단독적(hyperbolic) 모드로 전환되었다. 이는 기존 연구와 비교해 볼 때, 이 돌연변이 부위는 이 융합기능 효소인 PheA 단백질의 새로운 조절 부위의 존재를 암시 한다. 효소 동력학적 결과는 PheA 단백질의 되먹임저해 저항성 획득이 아미노산 돌연변이에 의한 단백질 구조의 변화 유도에 의한 것으로 생각된다. 더 나아가, 본 연구에서 선별된 돌연변이 유전자는 생물전환법을 이용한 필수아미노산 생산에 산업적으로 응용 가능성이 있다.