• 제목/요약/키워드: the academic classification system

검색결과 142건 처리시간 0.018초

강제동원 구술자료의 관리와 활용 -일제강점하강제동원피해진상규명위원회 소장 구술자료를 중심으로- (Management and Use of Oral History Archives on Forced Mobilization -Centering on oral history archives collected by the Truth Commission on Forced Mobilization under the Japanese Imperialism Republic of Korea-)

  • 권미현
    • 기록학연구
    • /
    • 제16호
    • /
    • pp.303-339
    • /
    • 2007
  • '일제강점하 강제동원 피해'라 함은 만주사변 이후 태평양전쟁에 이르는 시기에 일제에 의하여 강제동원 되어 군인 군속 노무자 위안부 등의 생활을 강요당한 자가 입은 생명 신체 재산 등의 피해를 말한다. 강제동원 피해 역사를 복원하기 위한 노력이 피해당사자, 유족, 시민단체, 학계 등에서 이루어져왔고, 그 결과 2004년 3일 5일 ${\ll}$일제강점하 강제동원피해 진상규명등에 관한 특별법${\gg}$ (2007년 5월 17일 일부 개정)이 제정 공포되었다. 이를 근거로 2004년 11월 10일 국무총리 소속으로 일제강점하 강제동원피해진상규명위원회(이하 강제동원위원회)가 발족하였고, 2005년 2월 1일부터 일제강점하 강제동원 피해의 진상을 규명하여 역사적 진실을 밝히는 것을 목적으로 업무를 수행하고 있다. 주요 업무는 강제동원 피해신고접수 및 피해신고조사(피해자 및 유족 심사 결정), 진상조사신청접수 및 진상조사, 진상조사 및 피해판정 불능에 관한 사항, 피해판정에 따른 호적정정, 강제동원 관련 국내외 자료수집 분석 및 보고서 작성, 유해발굴 및 수습 봉환, 사료관 및 추도공간 조성사업 등이다. 강제동원위원회는 피해조사 및 진상조사 업무를 위해 다양한 기록을 발굴 수집해 오고 있다. 여타 피해의 역사가 그러하듯이 이미 공개되었거나 새롭게 발굴되는 기록은 강제동원의 다양한 역사상을 확인하기 어려울 만큼 그 양이나 질에 면에서 부족하다. 피해의 역사에서 피해당사자의 이야기는 기록의 부재를 메우기도 하고, 기록 이상의 근거적 가치를 갖기도 한다. 강제동원위원회는 피해생존자와의 구술면담을 통해 다수의 구술자료를 생산하였고 조사업무에 활용하며 체계적인 관리방법을 토대로 관리하고 대중적인 활용까지 꾀하고 있다. 강제동원위원회의 구술자료는 생산 당시부터 철저한 기획에 의해 이루어졌고, 생산단계부터 관리와 활용의 편의성을 염두에 두고 디지털매체의 생산을 유도했다. 또한 조사업무 과정에서 생산되는 구술자료의 한계를 극복하기 위해 수차례 면담자 교육을 실시하고, 면담자로 하여금 구술당시의 상황을 면담일지로 남기도록 했다. 강제동원위원회는 소장 기록을 관리하는 별도의 기록관리시스템을 갖고 있지 않다. 디지털 아카이브는 피해 진상 관리시스템과 전자결재시스템을 통해 생산되어 관리되지 않는 생산 수집 기증 기록을 등록 검색하는 역할을 한다. 구술자료는 디지털 아카이브에 등록이 되어, 실물과 중복 보존되고 있다. 구술자료는 등록과 동시에 분류, 기술행위가 이루어지고 구술자료의 관리 아이디인 등록번호, 분류번호, 비치번호 등을 부여받게 된다. 강제동원위원회는 구술자료의 적극적인 활용을 위하여 구술기록집의 발간을 지속적으로 해오고 있고, 영상물 등의 제작을 계획하고 있다. 강제동원위원회의 구술자료는 정부차원의 조사 업무 과정에서 생산된 것이라는 한계, 예산부족이나 기록관리시스템 등의 부재 등을 넘어서 한시조직으로서 가능한 적극적인 방법으로 생산 관리 활용되고 있다. 축적된 구술자료는 향후 특별법에 규정되어 있는 대로 사료관 등이 건립된다면 대중 이용자들을 위해 더 체계적으로 관리 활용될 것이다.

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.