• 제목/요약/키워드: the VOF method

검색결과 231건 처리시간 0.021초

CFD 기반 유체충격 해석에서 공기 압축성 효과 (Air Compressibility Effect in CFD-based Water Impact Analysis)

  • 찬후피;안형택
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.581-591
    • /
    • 2011
  • This paper describes the air compressibility effect in the CFD simulation of water impact load prediction. In order to consider the air compressibility effect, two sets of governing equations are employed, namely the incompressible Navier-stokes equations and compressible Navier-Stokes equations that describe general compressible gas flow. In order to describe violent motion of free surface, volume-of-fluid method is utilized. The role of air compressibility is presented by the comparative study of water impact load obtained from two different air models, i.e. the compressible and incompressible air. For both cases, water is considered as incompressible media. Compressible air model shows oscillatory behavior of pressure on the solid surface that may attribute to the air-cushion effect. Incompressible air model showed no such oscillatory behavior in the pressure history. This study also showed that the CFD simulation can capture the formation of air pockets enclosed by water and solid surface, which may be the location where the air compressibility effect is dominant.

Simulating three dimensional wave run-up over breakwaters covered by antifer units

  • Najafi-Jilani, A.;Niri, M. Zakiri;Naderi, Nader
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.297-306
    • /
    • 2014
  • The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

피에조 잉크젯 헤드에서 액적 토출 현상에 대한 연구 (A Study on Droplet Formation from Piezo Inkjet Print Head)

  • 오세영;이정용;이유섭;정재우;위상권
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.1003-1011
    • /
    • 2006
  • Droplets are ejected onto a substrate through a nozzle by pushing liquids in flow channels of drop-on-demand devices. The behavior of ejection and formation of droplets is investigated to enhance the physical understanding of the hydrodynamics involved in inkjet printing. The free surface phenomenon of a droplet is described using $CFD-ACE^{TM}$ which employs the volume-of-fluid (VOF) method with the piecewise linear interface construction (PLIC). Droplet formation characteristics are analyzed in various flow regimes with different Ohnesorge numbers. The computational results show that the droplet formations are strongly dependent on the physical properties of working fluids and the inlet flow conditions. In addition, the wetting characteristics of working fluids on a nozzle influence the volume and velocity of a droplet produced in the device. This study may provide an insight into how a liquid droplet is formed and ejected in a piezoelectric inkjet printing device.

A Study on Wave Run-up Height and Depression Depth around Air-water Interface-piercing Circular Cylinder

  • Koo, Bon-Guk;Park, Dong-Woo;Paik, Kwang-Jun
    • 해양환경안전학회지
    • /
    • 제20권3호
    • /
    • pp.312-317
    • /
    • 2014
  • In this paper, the wave run-up height and depression depth around air-water interface-piercing circular cylinder have been numerically studied. The Reynolds Averaged Navier-Stokes equations (RANS) and continuity equations are solved with Reynolds Stress model (RSM) and volume of fluid (VOF) method as turbulence model and free surface modeling, respectively. A commercial Computational Fluid Dynamics (CFD) software "Star-CCM+" has been used for the current simulations. Various Froude numbers ranged from 0.2 to 1.6 are used to investigate the change of air-water interface structures around the cylinder and experimental data and theoretical values by Bernoulli are compared. The present results showed a good agreement with other studies. Kelvin waves behind the cylinder were generated and its wave lengths are longer as Froude numbers increase and they have good agreement with theoretical values. And its angles are smaller with the increase of Froude numbers.

Numerical investigation of solitary wave interaction with a row of vertical slotted piles on a sloping beach

  • Jiang, Changbo;Liu, Xiaojian;Yao, Yu;Deng, Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.530-541
    • /
    • 2019
  • To improve our current understanding of tsunami-like solitary waves interacting with a row of vertical slotted piles on a sloping beach, a 3D numerical wave tank based on the CFD tool $OpenFOAM^{(R)}$ was developed in this study. The Navier-Stokes equations were employed to solve the two-phase incompressible flow, combining with an improved VOF method to track the free surface and a LES model to resolve the turbulence. The numerical model was firstly validated by our laboratory measurements of wave, flow and dynamic pressure around both a row of piles and a single pile on a slope subjected to solitary waves. Subsequently, a series of numerical experiments were conducted to analyze the breaking wave force in view of varying incident wave heights, offshore water depths, spaces between adjacent piles and beach slopes. Finally, a slamming coefficient was discussed to account for the breaking wave force impacting on the piles.

부방파제의 유동과 와의 생성 및 소멸에 관한 연구 (A Study on Flow and Creation and Dissipation of Vorticity around Rectangular Floating Breakwater)

  • 윤종성;김명규;정광효;김가야
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.24-33
    • /
    • 2008
  • In this study, flow and creation and dissipation of vorticity around rectangular floating breakwater is investigated both experimentally and numerically. The PIV system(Particle image velocimetry) is employed to obtain the velocity field in the vorticity of rectangular structure. The numerical model, combined with ${\kappa}-{\varepsilon}$ turbulence model and the VOF method based on RANS equation, is used to analyze the turbulence structure. In the results of this study, the vorticity is found around conner of rectangular structure at all time domain, and creation and dissipation of vorticity are closely related to wave period. Separation points of phase of vortex due to flow separation for longer period waves are faster then for shorter period waves.

Reynolds 수가 다른 컨테이너선 모형 주위의 유동 계산 (Calculation of Flows around Container Ship Models with Different Reynolds Numbers)

  • 김병남;박종환;김우전
    • 대한조선학회논문집
    • /
    • 제44권3호
    • /
    • pp.258-266
    • /
    • 2007
  • CFD calculations are performed for KRISO 3600TEU container ship(KCS) models with different Reynolds numbers. Numerical calculations of the turbulent flows with the free surface around KCS have been carried out at $Re=0.791{\times}106\;and\;Re=1.4{\times}107$ using a standard Fluent package. In both cases, Froude number is fixed with 0.26 and wave elevation is simulated by using the VOF method. The calculated results at $Re=1.4{\times}107\;and\;Re=0.791{\times}106$ are compared with the experiment data of KRISO towing tank test and RIMS CWC test, respectively. Boundary layer thickness and wake field shows Reynolds number differences. There are some changes in wave pattern behind transom stern.

아이스하버식 어도 내 수리특성에 관한 수치해석연구 (NUMERICAL ANALYSIS OF THE HYDRAULIC CHARACTERISTICS OF ICE-HARBOR TYPE FISHWAY)

  • 고선호;최학규;이희범;이신형
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.15-19
    • /
    • 2015
  • A fishway is a structure on or around artificial and natural barriers, such as dams, locks and waterfalls, to help fishes' natural migration. In this paper, a computational fluid dynamics (CFD) code, termed SNUFOAM is used to analyze vertical hydraulic characteristic of rollway of fishway. Volume-of-fluid (VOF) method was used to handle free-surface. It is important to determine the factors influencing flow characteristics in fishway because fish use directional information from the flow characteristics to navigate through fishway. Fishway was modeled in 2-D and the influence of the stream velocity, slope, and weir height of fishway was tested. In results, the transition Reynolds number was $2{\times}10^5{\sim}3{\times}10^5$.

A zonal hybrid approach coupling FNPT with OpenFOAM for modelling wave-structure interactions with action of current

  • Li, Qian;Wang, Jinghua;Yan, Shiqiang;Gong, Jiaye;Ma, Qingwei
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.381-407
    • /
    • 2018
  • This paper presents a hybrid numerical approach, which combines a two-phase Navier-Stokes model (NS) and the fully nonlinear potential theory (FNPT), for modelling wave-structure interaction. The former governs the computational domain near the structure, where the viscous and turbulent effects are significant, and is solved by OpenFOAM/InterDyMFoam which utilising the finite volume method (FVM) with a Volume of Fluid (VOF) for the phase identification. The latter covers the rest of the domain, where the fluid may be considered as incompressible, inviscid and irrotational, and solved by using the Quasi Arbitrary Lagrangian-Eulerian finite element method (QALE-FEM). These two models are weakly coupled using a zonal (spatially hierarchical) approach. Considering the inconsistence of the solutions at the boundaries between two different sub-domains governed by two fundamentally different models, a relaxation (transitional) zone is introduced, where the velocity, pressure and surface elevations are taken as the weighted summation of the solutions by two models. In order to tackle the challenges associated and maximise the computational efficiency, further developments of the QALE-FEM have been made. These include the derivation of an arbitrary Lagrangian-Eulerian FNPT and application of a robust gradient calculation scheme for estimating the velocity. The present hybrid model is applied to the numerical simulation of a fixed horizontal cylinder subjected to a unidirectional wave with or without following current. The convergence property, the optimisation of the relaxation zone, the accuracy and the computational efficiency are discussed. Although the idea of the weakly coupling using the zonal approach is not new, the present hybrid model is the first one to couple the QALE-FEM with OpenFOAM solver and/or to be applied to numerical simulate the wave-structure interaction with presence of current.

슬러그류 액상속도 측정용 전류형식 전자기유량계 개발 (Development of a Current-Type Electromagnetic Flowmeter to Obtain the Liquid Mean Velocity in Two-Phase Slug Flow)

  • 강덕홍;안예찬;김종록;오병도;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1951-1956
    • /
    • 2004
  • The transient nature and complex flow geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et $al.^{(1)}$). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

  • PDF