• 제목/요약/키워드: the Sums of Sequences

검색결과 35건 처리시간 0.024초

ON THE STRONG LAWS OF LARGE NUMBERS OF NEGATIVELY ASSOCIATED RANDOM VARIABLES

  • Baek, J.I.;Choi, J.Y.;Ryu, D.H.
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.457-466
    • /
    • 2004
  • Let{$X_{ni}$\mid$\;1\;{\leq}\;i\;{\leq}\;k_n,\;n\;{\geq}\;1$} be an array of rowwise negatively associated random variables such that $P$\mid$X_{ni}$\mid$\;>\;x)\;=\;O(1)P($\mid$X$\mid$\;>\;x)$ for all $x\;{\geq}\;0,\;and\; \{k_n\}\;and\;\{r_n\}$ be two sequences such that $r_n\;{\geq}\;b_1n^r,\;k_n\;{\leq}\;b_2n^k$ for some $b_1,\;b_2,\;r,\;k\;>\;0$. Then it is shown that $\frac{1}{r_n}\;max_1$\mid${\Sigma_{i=1}}^j\;X_{ni}$\mid$\;{\rightarrow}\;0$ completely convergence and the strong convergence for weighted sums of N A arrays is also considered.

THE WEAK LAW OF LARGE NUMBER FOR NORMED WEIGHTED SUMS OF STOCHASTICALLY DOMINATED AND PAIRWISE NEGATIVELY QUADRANT DEPENDENT RANDOM VARIABLES

  • KIM, TAE-SUNG;CHOI, JEONG-YEOL;KIM, HYUN-CHUL
    • 호남수학학술지
    • /
    • 제21권1호
    • /
    • pp.149-156
    • /
    • 1999
  • Let $\{X_n,\;n{\geq}1\}$ be a sequence of pairwise negative quadrant dependent (NQD) random variables which are stochastically dominated by X. Let $\{a_n,\;n{\geq}1\}$ and $\{b_n,\;n{\geq}1\}$ be sequences of constants such that $a_n>0$ and $0. In this note a weak law of large number of the form $({\sum}_{j=1}^na_jX_j-{\nu}_n)/b_n\rightarrow\limits^p0$ is established, where $\{{\nu}_n,\;n{\geq}1\}$ is a suitable sequence.

  • PDF

STRONG LAWS OF LARGE NUMBERS FOR WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

  • Ko, Mi-Hwa;Han, Kwang-Hee;Kim, Tae-Sung
    • 대한수학회지
    • /
    • 제43권6호
    • /
    • pp.1325-1338
    • /
    • 2006
  • For double arrays of constants ${a_{ni},\;1{\leq}i{\leq}k_n,\;n{\geq}1}$ and sequences of negatively orthant dependent random variables ${X_n,\;n{\geq}1}$, the conditions for strong law of large number of ${\sum}^{k_n}_{i=1}a_{ni}X_i$ are given. Both cases $k_n{\uparrow}{\infty}\;and\;k_n={\infty}$ are treated.

격자다면체 부피에 대한 역사적 고찰 및 그 응용 - 수열 단원에의 응용 - (Historical review and it's application on the volume of lattice polyhedron - Focused on sequence chapter -)

  • 김향숙;하형수
    • 한국수학사학회지
    • /
    • 제23권2호
    • /
    • pp.101-121
    • /
    • 2010
  • 본 연구는 격자평면에서의 Pick의 정리에 대한 의의와 증명소개, Pick의 정리를 확장한 3차원 격자다면체에서의 Reeve의 정리 및 n차원 격자다면체로 일반화시킨 Ehrhart 다항식에 대한 소개와 역사적 고찰을 바탕으로 이를 고등학교 교육과정에서 다루고 있는 수열단원에 응용하기위해, Reeve의 정리를 이용하여 3차원 격자다면체의 격자점의 개수와 부피와의 관계를 제시하고, 나아가 Pick의 정리와 Ehrhart 다항식을 적용하여 수열의 합을 구하는 공식들을 새로운 증명법으로 도출하고자 한다.

MEAN CONVERGENCE THEOREMS AND WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS OF RANDOM ELEMENTS IN BANACH SPACES

  • Dung, Le Van;Tien, Nguyen Duy
    • 대한수학회보
    • /
    • 제47권3호
    • /
    • pp.467-482
    • /
    • 2010
  • For a double array of random elements {$V_{mn};m{\geq}1,\;n{\geq}1$} in a real separable Banach space, some mean convergence theorems and weak laws of large numbers are established. For the mean convergence results, conditions are provided under which $k_{mn}^{-\frac{1}{r}}\sum{{u_m}\atop{i=1}}\sum{{u_n}\atop{i=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in $L_r$ (0 < r < 2). The weak law results provide conditions for $k_{mn}^{-\frac{1}{r}}\sum{{T_m}\atop{i=1}}\sum{{\tau}_n\atop{j=1}}(V_{ij}-E(V_{ij}|F_{ij})){\rightarrow}0$ in probability where {$T_m;m\;{\geq}1$} and {${\tau}_n;n\;{\geq}1$} are sequences of positive integer-valued random variables, {$k_{mn};m{{\geq}}1,\;n{\geq}1$} is an array of positive integers. The sharpness of the results is illustrated by examples.