• Title/Summary/Keyword: the Stability of the Method

Search Result 9,672, Processing Time 0.038 seconds

Pipetting Stability and Improvement Test of the Robotic Liquid Handling System Depending on Types of Liquid (용액에 따른 자동분주기의 분주능력 평가와 분주력 향상 실험)

  • Back, Hyangmi;Kim, Youngsan;Yun, Sunhee;Heo, Uisung;Kim, Hosin;Ryu, Hyeonggi;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.62-68
    • /
    • 2016
  • Purpose In a cyclosporine experiment using a robotic liquid handing system has found a deviation of its standard curve and low reproducibility of patients's results. The difference of the test is that methanol is mixed with samples and the extractions are used for the test. Therefore, we assumed that the abnormal test results came from using methanol and conducted this test. In a manual of a robotic liquid handling system mentions that we can choose several setting parameters depending on the viscosity of the liquids being used, the size of the sampling tips and the motor speeds that you elect to use but there's no exact order. This study was undertaken to confirm pipetting ability depending on types of liquids and investigate proper setting parameters for the optimum dispensing ability. Materials and Methods 4types of liquids(water, serum, methanol, PEG 6000(25%)) and $TSH^{125}I$ tracer(515 kBq) are used to confirm pipetting ability. 29 specimens for Cyclosporine test are used to compare results. Prepare 8 plastic tubes for each of the liquids and with multi pipette $400{\mu}l$ of each liquid is dispensed to 8 tubes and $100{\mu}l$ of $TSH^{125}I$ tracer are dispensed to all of the tubes. From the prepared samples, $100{\mu}l$ of liquids are dispensed using a robotic liquid handing system, counted and calculated its CV(%) depending on types of liquids. And then by adjusting several setting parameters(air gap, dispense time, delay time) the change of the CV(%)are calcutated and finds optimum setting parameters. 29 specimens are tested with 3 methods. The first(A) is manual method and the second(B) is used robotic liquid handling system with existing parameters. The third(C) is used robotic liquid handling system with adjusted parameters. Pipetting ability depending on types of liquids is assessed with CV(%). On the basis of (A), patients's test results are compared (A)and(B), (A)and(C) and they are assessed with %RE(%Relative error) and %Diff(%Difference). Results The CV(%) of the CPM depending on liquid types were water 0.88, serum 0.95, methanol 10.22 and PEG 0.68. As expected dispensing of methanol using a liquid handling system was the problem and others were good. The methanol's dispensing were conducted by adjusting several setting parameters. When transport air gap 0 was adjusted to 2 and 5, CV(%) were 20.16, 12.54 and when system air gap 0 was adjusted to 2 and 5, CV(%) were 8.94, 1.36. When adjusted to system air gap 2, transport air gap 2 was 12.96 and adjusted to system air gap 5, Transport air gap 5 was 1.33. When dispense speed was adjusted 300 to 100, CV(%) was 13.32 and when dispense delay was adjusted 200 to 100 was 13.55. When compared (B) to (A), the result increased 99.44% and %RE was 93.59%. When compared (C-system air gap was adjusted 0 to 5) to (A), the result increased 6.75% and %RE was 5.10%. Conclusion Adjusting speed and delay time of aspiration and dispense was meaningless but changing system air gap was effective. By adjusting several parameters proper value was found and it affected the practical result of the experiment. To optimize the system active efforts are needed through the test and in case of dispensing new types of liquids proper test is required to check the liquid is suitable for using the equipment.

  • PDF

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF