• 제목/요약/키워드: the Stability of the Method

검색결과 9,672건 처리시간 0.041초

A virtual parameter to improve stability properties for an integration method

  • Chang, Shuenn-Yih
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.297-313
    • /
    • 2016
  • A virtual parameter is introduced into the formulation of the previously published integration method to improve its stability properties. It seems that the numerical properties of this integration method are almost unaffected by this parameter except for the stability property. As a result, it can have second order accuracy, explicit formulation and controllable numerical dissipation in addition to the enhanced stability property. In fact, it can have unconditional stability for the system with the instantaneous degree of nonlinearity less than or equal to the specified value of the virtual parameter for the modes of interest for each time step.

Stability graph method에 의한 석회석 지하채굴 공동의 안정성 평가 (Stability Assessment of Underground Limestone Mine Openings by Stability Graph Method)

  • 선우춘;정용복
    • 터널과지하공간
    • /
    • 제15권5호
    • /
    • pp.369-377
    • /
    • 2005
  • 지하공동의 안정성은 생산성과 안전을 확보해야 하는 광산의 운영에 있어서 가장 중요한 관심사이다. 암반분류는 많은 경험적인 설계방법의 근간을 이룰 뿐만 아니라 수치해석을 위한 기초자료로 이용되고 있다. 공동의 안정성에 영향을 주는 많은 요소들 중 주어진 암반의 조건 중에서 공동폭은 하나의 중요한 설계요소가 된다. 이 논문에서는 Lug에 의해 제안된 한계 공동폭 기준, Mathews stability graph method 그리고 저자들에 의해 제안된 한계 공동폭 기준을 비교하였다. Methews stability graph method를 이용하여 저자들에 의해 수정된 한계 공동폭 기준을 제안하였고 이것을 여러 석회석 광산 지하공동의 안정성을 평가하는 데 사용하였다.

A New Method for Monitoring Local Voltage Stability using the Saddle Node Bifurcation Set in Two Dimensional Power Parameter Space

  • Nguyen, Van Thang;Nguyen, Minh Y.;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.206-214
    • /
    • 2013
  • This paper proposes a new method for monitoring local voltage stability using the saddle node bifurcation set or loadability boundary in two dimensional power parameter space. The method includes three main steps. First step is to determine the critical buses and the second step is building the static voltage stability boundary or the saddle node bifurcation set. Final step is monitoring the voltage stability through the distance from current operating point to the boundary. Critical buses are defined through the right eigenvector by direct method. The boundary of the static voltage stability region is a quadratic curve that can be obtained by the proposed method that is combining a variation of standard direct method and Thevenin equivalent model of electric power system. And finally the distance is computed through the Euclid norm of normal vector of the boundary at the closest saddle node bifurcation point. The advantage of the proposed method is that it gets the advantages of both methods, the accuracy of the direct method and simple of Thevenin Equivalent model. Thus, the proposed method holds some promises in terms of performing the real-time voltage stability monitoring of power system. Test results of New England 39 bus system are presented to show the effectiveness of the proposed method.

동적(動的) 복원정(復原挺) 곡선(曲線)의 작도법(作圖法)과 그 응용(應用)에 관(關)하여 (Dynamical Stability Curve of the Ship on Polar Coordinates and Stability Indicator.)

  • 김진안
    • 대한조선학회지
    • /
    • 제2권1호
    • /
    • pp.15-19
    • /
    • 1965
  • The stability curves are very important data to decide the seaworthiness of all kinds of ships among waves. Both statical and dynamical stability curves on a rectangular coordinate system have broadly been handled at ship yards or at the government concerned, up to data. As concerns a method of obtaining a statical stability curve on polar coordinate system, the papers were presented once. Also, it is of use to research the dynamical stability curve on polar coordinate system. Author treated of the dynamical stability curve by four different methods, and tried to set the stability indicator inboard, adopted those proposals, in order to give some aids for good navigation on the sea. Fig. 1. shows a drawing method in case of the position of centre of buoyancy can be previously pointed out on the line corresponding to its inclination. Fig. 2. shows a method used a statical stability curve on polar coordinate. Fig. 3. shows a method obtained by the most simplified means. Fig. 4. shows dynamical stability curve made by geometrical expression method, instead of dynamical lever. A simple stability indicator which was mechanized above characteristics is attempted by author as shown Fig. 5 and Fig.6. It is demanded at hand, for more advanced improvement of such indicator.

  • PDF

선박복원력(船舶復原力)의 간이계산법(簡易計算法) (Note on a Simplified Method for Calculation of Stability)

  • 김효철
    • 대한조선학회지
    • /
    • 제15권1호
    • /
    • pp.7-9
    • /
    • 1978
  • In this calculation of statical stability of a ship, mechanical integrator was used most popularly and the direct calculation method such as a Barn's wedge method was also adopted in some cases. Both of the above method was developed for manual calculation which include mechanical integration or drafting procedure on body plan. Therefore, the computerization of stability calculation by the above method is very difficult. In this paper a simplified method for stability calculation is suggested, with based on hydrostatic data and immerged wedged characteristics.

  • PDF

A Novel SIME Configuration Scheme Correlating Generator Tripping for Transient Stability Assessment

  • Oh, Seung-Chan;Lee, Hwan-Ik;Lee, Yun-Hwan;Lee, Byong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1798-1806
    • /
    • 2018
  • When a contingency occurs in a large transmission route in a power system, it can generate various instabilities that may lead to a power system blackout. In particular, transient instability in a power system needs to be immediately addressed, and preventive measures should be in place prior to fault occurrence. Measures to achieve transient stability include system reinforcement, power generation restriction, and generator tripping. Because the interpretation of transient stability is a time domain simulation, it is difficult to determine the efficacy of proposed countermeasures using only simple simulation results. Therefore, several methods to quantify transient stability have been introduced. Among them, the single machine equivalent (SIME) method based on the equal area criterion (EAC) can quantify the degree of instability by calculating the residual acceleration energy of a generator. However, method for generator tripping effect evaluation does not have been established. In this study, we propose a method to evaluate the effect of generator tripping on transient stability that is based on the SIME method. For this purpose, the measures that reflect generator tripping in the SIME calculation are reviewed. Simulation results obtained by applying the proposed method to the IEEE 39-bus system and KEPCO system are then presented.

동적 신뢰성 해석 기법의 수치 안정성에 관하여 (On the Numerical Stability of Dynamic Reliability Analysis Method)

  • 이도근;옥승용
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.49-57
    • /
    • 2020
  • In comparison with the existing static reliability analysis methods, the dynamic reliability analysis(DyRA) method is more suitable for estimating the failure probability of a structure subjected to earthquake excitations because it can take into account the frequency characteristics and damping capacity of the structure. However, the DyRA is known to have an issue of numerical stability due to the uncertainty in random sampling of the earthquake excitations. In order to solve this numerical stability issue in the DyRA approach, this study proposed two earthquake-scale factors. The first factor is defined as the ratio of the first earthquake excitation over the maximum value of the remaining excitations, and the second factor is defined as the condition number of the matrix consisting of the earthquake excitations. Then, we have performed parametric studies of two factors on numerical stability of the DyRA method. In illustrative example, it was clearly confirmed that the two factors can be used to verify the numerical stability of the proposed DyRA method. However, there exists a difference between the two factors. The first factor showed some overlapping region between the stable results and the unstable results so that it requires some additional reliability analysis to guarantee the stability of the DyRA method. On the contrary, the second factor clearly distinguished the stable and unstable results of the DyRA method without any overlapping region. Therefore, the second factor can be said to be better than the first factor as the criterion to determine whether or not the proposed DyRA method guarantees its numerical stability. In addition, the accuracy of the numerical analysis results of the proposed DyRA has been verified in comparison with those of the existing first-order reliability method(FORM), Monte Carlo simulation(MCS) method and subset simulation method(SSM). The comparative results confirmed that the proposed DyRA method can provide accurate and reliable estimation of the structural failure probability while maintaining the superior numerical efficiency over the existing methods.

선형 주기시스템의 제어 및 수치해석적 절차 수립에 관한 연구 (Development of the Numerical Procedures for the Control of Linear Periodic Systems)

  • 조장현
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.121-128
    • /
    • 2000
  • The scope of this paper is focused to the systems which have the time period and they should be necessarily studied in the sense of stability and design method of controller to stabilize the orignal unstable systems. In general, the time periodic systems or the systems having same motions during certain time interval are easily found in rotating motion device, i.e., satellite or helicopter and widely used in factory automation systems. The characteristics of the selected dynamic systems are analyzed with the new stability concept and stabilization control method based on Lyapunov direct method. The new method from Lyapunov stability criteria which satisfies the energy convergence is studied with linear algebraic method. And the numerical procedures are developed with computational programming method to apply to the practical linear periodic systems. The results from this paper demonstrate the usefulness in analysis of the asymptotic stability and stabilization of the unstable linear periodic system by using the developed simulation procedures.

  • PDF

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.

대심도 터널의 안정성 해석 방법에 대한 고찰 (A Consideration on the Stability Analysis Method of Great Deep Tunnels)

  • 김주봉;안경철;김영준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.301-308
    • /
    • 1999
  • The construction of great deep tunnels has become an important part in tunnel construction especially in the mountain area. Therefore, it is necessary to establish the proper method of the stability analysis for great deep tunnels. In this paper presents the study result on the followings: (1) Evaluation of practical problem on the stability analysis of great deep tunnels. (2) Proposal of the proper on method for great deep tunnels analysis considering the depth of overburden. (3) Understanding of the ground behavior of the great deep tunnel through the sensitivity analysis and the parametric study.

  • PDF