• Title/Summary/Keyword: the Scientific community

Search Result 413, Processing Time 0.028 seconds

KISTI-ML Platform: A Community-based Rapid AI Model Development Tool for Scientific Data (KISTI-ML 플랫폼: 과학기술 데이터를 위한 커뮤니티 기반 AI 모델 개발 도구)

  • Lee, Jeongcheol;Ahn, Sunil
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.73-84
    • /
    • 2019
  • Machine learning as a service, the so-called MLaaS, has recently attracted much attention in almost all industries and research groups. The main reason for this is that you do not need network servers, storage, or even data scientists, except for the data itself, to build a productive service model. However, machine learning is often very difficult for most developers, especially in traditional science due to the lack of well-structured big data for scientific data. For experiment or application researchers, the results of an experiment are rarely shared with other researchers, so creating big data in specific research areas is also a big challenge. In this paper, we introduce the KISTI-ML platform, a community-based rapid AI model development for scientific data. It is a place where machine learning beginners use their own data to automatically generate code by providing a user-friendly online development environment. Users can share datasets and their Jupyter interactive notebooks among authorized community members, including know-how such as data preprocessing to extract features, hidden network design, and other engineering techniques.

A study on the ecosystem-based resource management system of self-regulatory community fisheries (자율관리 마을어업의 생태계 기반 자원관리시스템 연구)

  • Park, Hee-Won;Zhang, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • A self-regulatory community fisheries management program in Korea is designed to enhance fisheries resources, to protect fishing grounds of self-regulatory communities, and to manage their fisheries resources by their own regulations and knowledge. This study explored an applicable ecosystem-based management plan based on the scientific investigation and analysis. This study suggested objectives, indicators and reference points of the ecosystem-based resource management system which are applicable to selfregulatory community fisheries. The objectives of the management system are to maintain sustainable fisheries production, to maintain optimum fishing intensity, to reduce by-catch, to conserve spawning ground and habitat, to maintain optimum habitat environment, to increase/maintain abundance of prey species, to increase/maintain stock biomass, and to conduct stock enhancement on the basis of scientific assessment. The improved methods for the assessment and management are introduced by demonstrating a self-regulatory fishery which targets on hen clam in Dong-li fishing village in Busan.

Analysis of Elementary Students' Interlanguage in Science Class about Heat and Temperature (열과 온도 수업에서 나타난 초등학생들의 중간 언어 분석)

  • Lee, Ilyeon;Jang, Shinho
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.1
    • /
    • pp.123-130
    • /
    • 2015
  • For effective science learning, teachers need to rearrange scientific language so that students can understand the contents with their incomplete language resources. Interlanguage is the interplay between everyday language and scientific language. The purpose of the study was to analyze the patterns of interlanguage during 4th grade science class to learn "Heat and Temperature" and to find the features of meaning sharing inside classroom in which a teacher and students participated. The data analysis shows that elementary students' interlanguage has different features compared to scientific language that involves passive voice and content-specialized nouns. Students' interlanguage implied the quality of class community's knowledge-sharing, according to the degree of how students can connect scientific language and everyday language in more effective ways. The implication to elementary science education was discussed.

Exploring How a High School Science Teacher's Understanding and Facilitation of Scientific Modeling Shifted through Participation in a Professional Learning Community (교사학습공동체에 참여한 한 고등학교 교사의 과학적 모델링에 대한 이해 및 수업 실행 변화 탐색 -프레임 분석을 중심으로-)

  • Shim, Soo-Yean
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • The purpose of this study is to explore how a high school science teacher (Teacher E) shifted her understanding and facilitation of scientific modeling through participation in a professional learning community (PLC) for over a year. Based on socially situated theory of learning, I focused on examining Teacher E's frames about scientific modeling from her social interactions. Teacher E participated in her school-based PLC over a year and collaborated with other science teachers, coaches, and researchers to improve science instruction. I qualitatively explored her participation in 6 full-day professional learning opportunities-studios-where the PLC members collectively planned, implemented, and debriefed modeling-based lessons. Especially, I focused on two Studios (Studio 2, 6) where Teacher E became the host teacher and implemented the lessons. I also examined her classroom teaching in those Studios. To understand how the PLC inquiry affected the shifts observed in Teacher E's understanding and practice, I explored how the inquiry evolved over the 6 Studios. Findings suggest that in Studio 2, Teacher E viewed students' role in scientific modeling as to fill out the worksheet with "correct" answers. Meanwhile, in Studio 6, she focused on helping students collaborate to construct explanatory models of phenomena using evidence. The PLC inquiry, focused on supporting students' construction of evidence-based explanations and collaboration in scientific modeling, seemed to promote the shifts observed in Teacher E's understanding and facilitation of scientific modeling. These findings can inform educational researchers and practitioners who aim to promote teachers' professional learning to support students' epistemic practices.

Inquiry-Based Science Instruction Perceived by Beginning Science Teachers in a Professional Learning Community (교사학습공동체 활동을 한 초임중등과학교사의 과학 탐구 수업에 대한 인식)

  • Kim, Yurim;Choi, Aeran
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.360-375
    • /
    • 2019
  • The purpose of this study was to investigate beginning science teachers' perceptions of inquiry-based science instruction using open-ended questionnaire and semi-structured interview. Participants of this study voluntarily set up a goal of inquiry-based science instruction, planned inquiry-based science lessons, and shared and reflected their teaching experiences in their professional learning community for more than a year. Participant teachers recognized students' construction of core scientific concepts through performing scientific inquiry as a goal of science inquiry instruction. Participant teachers indicated that goals of science education such as 'learning scientific core concepts', 'improving students' interest of science', 'improving scientific thinking', and 'understanding the nature of science' can be achieved through students' active engagement in scientific inquiry. Participant teachers recognized not only the importance of teachers' role, but also what roles science teachers should play in order to enable students to perform scientific inquiry. Participant teachers emphasized teachers' roles such as 'identifying core concepts', 'reorganizing science curriculum', 'considering student ability', 'asking questions and providing feedbacks to students', 'explaining scientific concepts', and 'leading students' argumentation.'

A Study on the Quantitative Analysis of Scientific Communication (학술 커뮤니케이션의 수량학적 분석에 관한 연구)

  • Kim Hyun-hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.14
    • /
    • pp.93-130
    • /
    • 1987
  • Scientific communication is an information exchange activity between scientists. Scientific communication is carried out in a variety of informal and formal ways. Basically, informal communication takes place by word of mouth, whereas formal communication occurs via the written word. Science is a highly interdependent activity in which each scientist builds upon the work of colleagues past and present. Consequently, science depends heavily on scientific communication. In this study, three mathematical models, namly Brillouin measure, logistic equation, and Markov chain are examined. These models provide one with a means of describing and predicting the behavior of scientific communication process. These mathematical models can be applied to construct quality filtering algorithms for subject literature which identify synthesized elements (authors, papers, and journals). Each suggests a different type of application. Quality filtering for authors can be useful to funding agencies in terms of identifying individuals doing the best work in a given area or subarea. Quality filtering with respect to papers can be useful in constructing information retrieval and dissemination systems for the community of scientists interested m the field. The quality filtering of journals can be a basis for the establishment of small quality libraries based on local interests in a variety of situations, ranging from the collection of an individual scientist or physician to research centers to developing countries. The objective of this study is to establish the theoretical framework for informetrics which is defined as the quantitative analysis of scientific communication, by investigating mathematical models of scientific communication.

  • PDF

Comparative Analysis on the STS Contents of the 6th and 7th primary Science Curriculum (제6차 및 제7차 초등학교 과학과 교육과정에서의 STS 내용 비교)

  • Kwon, Chi-Soon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • This study was carried out to examine the tendency about the relative importance of STS education of the 6th and 7th primary science curriculum. The results of the research are as follows. Primary science textbooks in the 6th curriculum, average 13.3% of the total pages was assigned to STS contents but it is increased to 24.2% in the science textbooks of the 7th curriculum. STS constituents of the 6th primary science textbooks come out orderly applications of scientific knowledge(47.1%), relevance of a community(40%), social problems and issues(11.8%). Of the 7th science textbooks, the contents about applications of scientific knowledge amount to 67.1% of the total STS constituent and relevance of a community(32.2%) rank behind it. The contents of other components are not enough. The 6th science textbooks contents about the effect of technological development amount to 35.3% of the total STS subject area, and environmental quality(20.0%), natural resource(15.2%), energy(11.8%), sociology of science(11.8%) ranks behind it. In the 7th science textbooks ranking is the effect of technological development(42.3%), natural resource(17.3%), energy(12.5%), sociology of science(12.5%), environmental quality(20.0%). There are few contents about population, human engineering and space research and national defense in the science textbooks.

  • PDF

Sino-South Korean Scientific Collaboration Based On Co-Authored SCI Papers

  • Sun, Junwei;Jiang, Chunlin
    • Journal of Information Science Theory and Practice
    • /
    • v.2 no.1
    • /
    • pp.48-61
    • /
    • 2014
  • Using statistic and bibliometric methods to characterize scientific cooperation between China (excluding Hong Kong, Macao, and Taiwan) and South Korea through their bilateral co-authored papers covered by the Science Citation Index CD-ROM, 1991-2010, in our paper we exploit the feature of their cooperation in four levels: time sequence, academic community, key fields, and institution distribution. From the time sequence we know that collaboration between China and Korea starts in 1991, reaching the first peak during 2004-2007. As for the academic community, the number of Chinese corresponding authors (2414) is slightly lower than that of Korea (2700). Regarding the 27 high yield authors, there are only 4 coming from China. Korea has a higher active level than Chinese authors. China and Korea tend to cooperate with each other on strong disciplines such as physics, chemistry, material science, engineering, mathematics, pharmaceutical, computer science and biology. Furthermore, they also attach great importance to basic research and high-tech cooperation. Besides, Chinese Academy of Sciences ranks at the top 1 among the distribution of institutions. As a majority of the collaborative institutions are universities, the participation of non-university institutions is relatively low. There are 7 Korean universities among the top ten institutions, while Yanbian University and Tsinghua University in China rank respectively as third and fourth. Seoul National University, accompanied by Korea University and Yonsei University as the three top Korean universities, is also among the top among the cooperating institutions.

Bibliometric Analysis of Collaboration Network and the Role of Research Station in Antarctic Science

  • Kim, Hyunuk;Jung, Woo-Sung
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.92-98
    • /
    • 2016
  • Due to the large scale of Antarctic science, scientific collaboration is required for conducting scientific research. In this study, we attempted to investigate collaboration network and the role of research station in Antarctic science based on bibliometric data from 1995 to 2014. We confirmed that geographical proximity tends to be important for scientific collaboration by employing community detection in the network. This result raises the question about what the role of research station in Antarctica is. We tried to reveal its role by focusing on five countries, Belgium, China, Czech Republic, India, and Korea that constructed new research stations during the last decade. Relative growth rate, a value to measure the growth of publications, didn't differ much around the construction period compared to those in other periods for these countries except Belgium. However, we found geographical keywords emerged around the construction for all five countries. These keywords were utilized to observe national research activities in Antarctica. They show where countries started to be concerned about after the construction.

Bringing Computational Thinking into Science Education

  • Park, Young-Shin;Green, James
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.340-352
    • /
    • 2019
  • The purpose of science education is scientific literacy, which is extended in its meaning in the $21^{st}$ century. Students must be equipped with the skills necessary to solve problems from the community beyond obtaining the knowledge from curiosity, which is called 'computational thinking'. In this paper, the authors tried to define computational thinking in science education from the view of scientific literacy in the $21^{st}$ century; (1) computational thinking is an explicit skill shown in the two steps of abstracting the problems and automating solutions, (2) computational thinking consists of concrete components and practices which are observable and measurable, (3) computational thinking is a catalyst for STEAM (Science, Technology, Engineering, Arts, and Mathematics) education, and (4) computational thinking is a cognitive process to be learned. More implication about the necessity of including computational thinking and its emphasis in implementing in science teaching and learning for the envisioned scientific literacy is added.