• Title/Summary/Keyword: the Last Glacial Maximum

Search Result 66, Processing Time 0.028 seconds

The Natural Environment during the Last Glacial Maximum Age around Korea and Adjacent Area

  • Yoon, Soon-Ock;Hwang, Sang-Ill
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.33-38
    • /
    • 2003
  • This study is conducted to examine the data of climate or environmental change in the northeastern Asia during the last glacial maximum. A remarkable feature of the 18,000 BP biome reconstructions for China is the mid-latitude extention of steppe and desert biomes to the modem eastern coast. Terrestrial deposits of glacial maximum age from the northern part of Yellow Sea suggest that this region of the continental shelf was occupied by desert and steppe vegetation. And the shift from temperate forest to steppe and desert implies conditions very much drier than present in eastern Asia. Dry conditions might be explained by a strong winter monsoon and/or a weak summer monsoon. A very strong depression of winter temperatures at LGM. has in the center of continent has influenced in northeast Asia similarly. The vegetation of Hokkaido at LGM was subarctic thin forest distributed on the northern area of middle Honshu and cool and temperate mixed forest at southern area of middle Honshu in Japan. The vegetation landscape of mountain- and East coast region of Korea was composed of herbaceous plants with sparse arctic or subarctic trees. The climate of yellow sea surface and west region of Korea was much drier and temperate steppe landscape was extended broadly. It is supposed that a temperate desert appeared on the west coast area of Pyeongan-Do and Cheolla-Do of Korea. The reconstruction of year-round conditions much colder than today right across China, Korea and Japan is consistent with biome reconstruction at the LGM.

  • PDF

Changes of Clay Mineral Assemblages in the Northern Part of the Aleutian Basin in the Bering Sea during the Last Glacial Period (마지막 빙하기 동안 베링해 알류샨 분지 북부 지역의 점토광물 조성 변화)

  • Kim, Sung-Han;Cho, Hyen-Goo;Khim, Boo-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • Clay mineral assemblages of core PC25A collected from the northern part of the Aleutian Basin in the Bering Sea were examined in order to investigate changes in sediment provenances and transport pathways. Ages of core PC25A were determined by both Last Appearance Datum of radiolaria (L. nipponica sakaii; $48.6{\pm}2\; ka$) and age control points obtained by the correlations of $a^{\ast},\; b^{\ast}$, and laminated sediment layers with the adjacent core PC23A, whose ages are well constrained. The corebottom age of core PC25A was calculated to be about 57,600 yr ago and core-top might be missing during coring execution. Average contents of smectite, illite, kaolinite, and chlorite during the last glacial period are 11% (5~24%), 47% (36~58%), 13% (9~19%), and 29% (21~40%), respectively. Clay mineral assemblages of the last glacial period are characterized by higher illite and lower smectite contents than those of core MC24 representing the modern values. Illite-rich clay sediments during the warm Early Holocene were transported from the northern part of Alaska continent (Province 1) through the ice-melt waters. During the deglacial period (B${\phi}$lling-All${\phi}$rod) of MIS 2, clay-sized particles seemed to be also transported by ice-melt waters mainly from Province 2 and Province 3 located farther south than Province 1. Higher smectite content during the Last Glacial Maximum is attributed to increased amounts of clay particles from the adjacent Alaska Peninsula (Province 4). From the early to the middle MIS 3, illite and smectite contents decreased, whereas chlorite content increased. With the low sea level standing during MIS 3 the supply of clay sediments from Province 2 and Province 3 was most likely intensified. Changes in clay mineral assemblages of core PC25A located in the northern part of the Aleutian Basin in the Bering Sea are closely related to the change of surface current system caused by sea level variation during the last glacial period.

Paleo-Tsushima Water influx to the East Sea during the lowest sea level of the late Quaternary

  • Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.714-724
    • /
    • 2005
  • The East Sea, a semi-enclosed marginal sea with shallow straits in the northwest Pacific, is marked by the nearly geographic isolation and the low sea surface salinity during the last glacial maximum (LGM). The East Sea might have the only connection to the open ocean through the Korea Strait with a sill depth of 130 m, allowing the paleo-Tsushima Water to enter the sea during the LGM. The low paleosalinity associated with abnormally light $\delta^{18}O$ values of planktonic foraminifera is interpreted to have resulted from river discharge and precipitation. Nevertheless, two LGM features in the East Sea are disputable. This study attempts to estimate volume transport of the paleo-Tsushima Water via the Korea Strait and further examines its effect on the low sea surface salinity (SSS) during the lowest sea level of the LGM. The East Sea was not completely isolated, but partially linked to the northern East China Sea through the Korea Strait during the LGM. The volume transport of the paleo-Tsushima Water during the LGM is calculated approximately$(0.5\~2.1)\times10^{12}m^3/yr$ on the basis of the selected seismic reflection profiles along with bathymetry and current data. The annual influx of the paleo-Tsushima Water is low, compared to the 100 m-thick surface water volume $(about\;79.75\times10^{12}m^3)$ in the East Sea. The paleo-Tsushima Water influx might have changed the surface water properties within a geologically short time, potentially decreasing sea surface salinity. However, the effect of volume transport on the low sea surface salinity essentially depends on freshwater amounts within the paleo-Tsushima Water and excessive evaporation during the glacial lowstands of sea level. Even though the paleo-Tsushima Water is assumed to have been entirely freshwater at that time period, it would annually reduce only about 1‰ of salinity in the surface water of the East Sea. Thus, the paleo-Tsushima Water influx itself might not be large enough to significantly reduce the paleosalinity of about 100 m-thick surface layer during the LGM. This further suggests contribution of additional river discharges from nearby fluvial systems (e.g. the Amur River) to freshen the surface water.

Palynological Study of Yugawanuma Moor in the Central Oh-u Backbone Range, northeastern Japan (동북 일본 오우산맥 중앙부 탕천소의 화분분석 연구)

  • ;Koichiro Hibino
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • We have analyzed the pollen sequence since the end of Last Glacial Maximum at Yugawanuma moor The Yugawanuma moor($39^{\circ}15'N$, $140^{\circ}45'E$) is situated in an closed depression of an old landslide about 590m a.s.l. near the boundary between Iwate and Akita Prefecture. The main results are as follows : Five forest zones have been distinguished. \circled1 Y-I zone : Pinus-Picea-Betula zone (the subalpine forest.the end of the Last Glacial Maximum), \circled2 Y-II : Betula zone (the subalpine forest.the Late Glacial), \circled3 Y-III : Quercus-Betula-Ulmus/Zelkova zone (the lower subalpine or the upper montane forest.R I), \circled4 Y-IV : Fagus zone (the cool temperate deciduous broad-leaved forest.R II), \circled5 Y-V : Fagus-Quercus-Cryptomeria zone (the mixed forest conifer and deciduous broad-leaved forest.R III).

  • PDF

Chronology and environment of the Palaeolithic and Neolithic cultures on the southern Russian Far East

  • Kuzmin, Yaroslav V.
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.2
    • /
    • pp.39-56
    • /
    • 2002
  • The results of geoarchaeological studies of the prehistoric cultural complexes on the Russian Far East (Primorye, or Maritime Province; the Amur River basin; and Sakhalin Island) are presented. Upper Palaeolithic sites are dated to ca. 40,000-10,500 B.P. They existed during the mild climate of the Chernoruchie interstadial (ca. 40,000-21,000 B.P.); during harsh climate at the Last Glacial Maximum, ca. 20,000-18,000 B.P., in several places on the Russian Far East (Primorye, Amur River basin, and Sakhalin); and during climatic amelioration in the Late Glacial time, ca. 16,000-10,500 B.P. The earliest Neolithic sites, represented by Osipovka and Gromatukha cultures, existed at ca. 13,000-10,000 B.P. in the environment of coniferous forests with admixture of broadleaved taxa. Since ca. 8000 B.P., Neolithic cultures appeared in all of the Russian Far East. They existed until ca. 3000 B.P., first during the Holocene Climatic Optimum, ca. 8000-5000 B.P., in the environment of coniferous-broadleaved forests, and later, at ca. 5000-3000 B.P., in the environment of birch-oak and coniferous forests.

  • PDF

Reconstruction of the Paleo-environment during the Upper Pleistocene at Seongjeong-dong, Cheonan-si, inferred from Pollen Analysis (천안 성정동 지역의 화분분석 결과를 통한 Pleistocene 후기 고환경복원)

  • Kim, Hye-Ryung;Yoon, Soon-Ock;Hwang, Sang-Ill;Lee, Byeong-Cheol
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.179-192
    • /
    • 2012
  • Paleo-environments such as vegetation and climate changes from the Last Glacial Maximum to the Holocene are reconstructed by the results of pollen analysis in the floodplain of Cheonan River, Seongjeong-dong, Cheonan-si, Chungnam Province. In the pollen zone I (approximately 23,000-15,000 yr BP), the area studied was covered by the extensive grassland with sparse wood. The climatic conditions were very cold, but it might not be so severe compared to the intermontane area in the Yeongnam area. This zone corresponds to the 'very cold' stage of Woldstedt(1962) and Yoon and Jo(1996). No pollen horizon(pollen zone II) deposited between approximately 15,000 and 10,000 yr BP corresponds to the transitional stage from the Last Glacial Maximum to the Holocene. The horizon consists of the dark gray brown sand deposits different from the other horizons dominated by the silty deposits and these sedimentary properties may be attributed to the dramatic climate changes between the very cold stage and warm stage. The pollen zone III formed between approximately 10,000 and 6,000 yr BP shows clearly different pollen compositions indicative of temperate climate conditions.

  • PDF

Species Identification of Charcoals Excavated at the Late Paleolithic Site of Suyanggae, Danyans (단양 수양개 후기구석기 유적 숯의 수종분석)

  • Park, Won-Kyu;Kim, Yo-Jung;Lee, Yung Jo
    • Journal of Conservation Science
    • /
    • v.12 no.1 s.15
    • /
    • pp.26-30
    • /
    • 2003
  • We examined the species of charcoals excavated at the late paleotithic site of Suyanggae. Suyanggae is located on the riverbed of Han river near Banyans, central Korea. The charcoals belong to the post-glacial period (radiocarbon dates: $18,630\~16,400\;BP$). Only two species were identified. Most of samples (139 among 142) examined were Pinus spp. (diploxylon). The other 3 samples were Picea spp. The results suggest the upper layer at $235\~245\;cm$ below the ground level was formed during dry and warm post glacial period, predominated by two needle pines and lower layer at 270 cm below the ground layer during the last glacial maximum period, predominated by spruces.

  • PDF

Climatic Changes During the Past 400,000 Years

  • Yi, HI-Il;Shin, Im-Chul
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.23-31
    • /
    • 2004
  • Temperature variations, and carbon dioxide and methane concentrations are summarized during the past 400,000 years. Atmospheric temperature varied approximately within $10^{\circ}C$ during the past 400,000 years. Most of the time during the past 400,000 years, temperature was lower than today except 410000, 320000, 250000, and 125000 years ago. Temperature was slightly higher or at least similar to today during the time period of 410000. 320000, 250000, and 125000 years ago. The carbon dioxide concentration varied between 180 and 300 ppm, and the methane concentration varied between 40 and 700ppb. The present atmospheric concentration of carbon dioxide is 375 ppm and methane is 1750 ppb. Temperature was 5-$7^{\circ}C$ lower than today during the Last Glacial Maximum(18,000 years ago) and the Younger Dryas(10,000 years ago). Temprature was varied within $1^{\circ}C$ during the past 10,000 years. Especially Middle Holocene Climatic Optimum(6,000 years ago), Medieval Warm Period (500-1,000 years ago), and Little Ice Age(100-500 year ago) were global climatic events. In general, mechanism for the Middle Holocene Climatic Optimum, Medical Warm Period, and Little Ice Age can be explained by the solar insulation, however their exact mechnism is not well known. Carbon dioxide concentration during the past 400,000 years never reached the current value of 375 ppm. Furthermore, the current methane concentration never reached during the past 20Ma. However, current temperature value has happened several times during the past 400,000 years. The implication of this is unsolved question so far. This should be challenged in the near future.

  • PDF

Biogeographic pattern of four endemic Pyropia from the east coast of Korea, including a new species, Pyropia retorta (Bangiaceae, Rhodophyta)

  • Kim, Sun-Mi;Choi, Han-Gu;Hwang, Mi-Sook;Kim, Hyung-Seop
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.55-68
    • /
    • 2018
  • Foliose species of the Bangiaceae (Porphyra s. l.) are very important in Korean fisheries, and their taxonomy and ecophysiology have received much attention because of the potential for developing or improving aquaculture techniques. Although 20 species of foliose Bangiales have been listed from the Korean coast, some of them remain uncertain and need further comparative morphological studies with molecular comparison. In this study, we confirm the distribution of four Pyropia species from the east coast of Korea, Pyropia kinositae, P. moriensis, P. onoi, and P. retorta sp. nov., based on morphology and rbcL sequence data. Although P. onoi was listed in North Korea in old floral works, its occurrence on the east coast of South Korea is first revealed in this study based on molecular data. P. kinositae and P. moriensis, which were originally described from Hokkaido, Japan, are first reported on the east coast of Korea in this study. Pyropia retorta sp. nov. and P. yezonesis share a similar thallus color and narrow spermatangial patches in the upper portion of the frond, and they have a sympatric distribution. However, P. retorta can be distinguished by the curled or twisted thalli and by molecular data. The biogeographic pattern of the two native species, P. kinositae and P. retorta, suggests that the east coast of Korea may have been a place of refugia during the Last Glacial Maximum (LGM), and then recolonized to the northern part of Japan through the restored East Korean Warm Current after the LGM.