• Title/Summary/Keyword: the Kriging model

Search Result 329, Processing Time 0.023 seconds

Optimal Design of a Two-phase BLDC Motor Considering Efficiency and Torque Ripple

  • Kim, Jae-Beom;You, Yong-Min;Kang, Sun-Il;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1131-1137
    • /
    • 2013
  • This paper introduces novel a two-phase permanent magnet BLDC (PMBLDC) motor with both an asymmetric tooth and an auxiliary tooth in order to improve the dead point, efficiency and torque ripple. To calculate the merits of introducing each of the asymmetric tooth and the auxiliary tooth, characteristic analysis is performed respectively using finite element method (FEM). To maximize performance, we propose a novel model which combines the asymmetric tooth and the auxiliary tooth. To maximize the efficiency of the novel model, an optimal design is processed using the Kriging method and a genetic algorithm. Finally, an experiment is used to confirm the initial and optimal design results.

Evaluation of Optimization Models for a Dimpled Channel to Enhance Heat Transfer (딤플 유로의 열전달 증진을 위한 최적화모델 비교)

  • Shin, Dong-Yoon;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2552-2557
    • /
    • 2007
  • Shape optimization of an internal cooling passage with staggered dimples on single surface is performed and performances of surrogates are evaluated in this paper. Optimizations are performed so that turbulent heat transfer can be enhanced compromising with pressure loss due to friction. The three-dimensional governing differential equations have been solved to find the overall Nusselt number and friction factor which are related to the objective functions of this problem. Three design variables were selected among the dimensionless geometric variables. Basic surrogate models such as second order polynomial response surface approximation (RSA), Kriging meta-modeling technique, radial basis neural network (RBNN), and derived press based averaged (PBA) surrogate model are constructed. The optimal points are searched from the above constructed surrogates by sequential quadratic programming (SQP). It is shown that use of multiple surrogates can increase the robustness in prediction of better design with minimum computational cost.

  • PDF

A CASE STUDY ON INVESTMENT EVALUATION OF A PRIVATE SECTOR PROJECT WITH GEOTECHNICAL RISKS

  • Yoshiki Onoi;Hiroyasu Ohtsu
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.824-829
    • /
    • 2005
  • This paper focuses on construction cost volatility for the purpose of private sector investment by use of a financial model with key indices of IRR and DSCR (Debt Service Coverage Ratio). A case project, 1,000 MW pumped storage hydropower plant, has shown that its financial impacts by cost volatility of underground works are less measured than interest rates impacts by interest rate of loans. Probabilistic analysis of costs under geotechnical conditions has been made by Indicator Kriging method. And, in the modeling of interest rates, geometric Brownian motion has been applied. Both of these impacts are measured on the same financial model.

  • PDF

A Study on Interpolation methods and size of grid to the various topographical characteristics for the construction of DEM(Digital Elevation Model) (수치표고모형(DEM) 구축을 위한 지형별 보간 방법 및 격자크기에 관한 연구)

  • Woo, Je-Yoon;Koo, Jee-Hee;Hong, Chang-Hee;Kim, Tae-Hoon
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.2 s.6
    • /
    • pp.5-19
    • /
    • 2001
  • We are able to construct and utilize DEM(Digital Elevation Model) throughout the NGIS(National Geographic Information System) project. It is important that interpolation methods and appreciate size of grid for the construction of accurate DEM(Digital Elevation Model). There were several references related to the DEM(Digital Elevation Model) construction method, however they couldn't consider various topographical characteristics in the korea. In this study, we recommended that suitable interpolation method for each topographic element. After dividing Poonggi area into mountain, hill, urban, agricultural land, we constructed DEM(Digital Elevation Model) with various interpolation methods and grid size using 1:5,000 digital map. Then evaluated accuracy using elevation data which extracted from air-photo. The interpolation methods were analyzed and compared for various topographical conditions. As a result, Kriging method was superior to TIN method for all the topographical conditions. Another experiment was performed to examine optimal grid space for DEM with each topographical condition. 10m grid space was most suitable for mountain area and hilly districts, while 30m grid space was most suitable for urban area and farm land.

  • PDF

Thermal conductivity prediction model for compacted bentonites considering temperature variations

  • Yoon, Seok;Kim, Min-Jun;Park, Seunghun;Kim, Geon-Young
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3359-3366
    • /
    • 2021
  • An engineered barrier system (EBS) for the deep geological disposal of high-level radioactive waste (HLW) is composed of a disposal canister, buffer material, gap-filling material, and backfill material. As the buffer fills the empty space between the disposal canisters and the near-field rock mass, heat energy from the canisters is released to the surrounding buffer material. It is vital that this heat energy is rapidly dissipated to the near-field rock mass, and thus the thermal conductivity of the buffer is a key parameter to consider when evaluating the safety of the overall disposal system. Therefore, to take into consideration the sizeable amount of heat being released from such canisters, this study investigated the thermal conductivity of Korean compacted bentonites and its variation within a temperature range of 25 ℃ to 80-90 ℃. As a result, thermal conductivity increased by 5-20% as the temperature increased. Furthermore, temperature had a greater effect under higher degrees of saturation and a lower impact under higher dry densities. This study also conducted a regression analysis with 147 sets of data to estimate the thermal conductivity of the compacted bentonite considering the initial dry density, water content, and variations in temperature. Furthermore, the Kriging method was adopted to establish an uncertainty metamodel of thermal conductivity to verify the regression model. The R2 value of the regression model was 0.925, and the regression model and metamodel showed similar results.

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.

Meta-model Effects on Approximate Multi-objective Design Optimization of Vehicle Suspension Components (차량 현가 부품의 근사 다목적 설계 최적화에 대한 메타모델 영향도)

  • Song, Chang Yong;Choi, Ha-Young;Byon, Sung-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.74-81
    • /
    • 2019
  • Herein, we performed a comparative study on approximate multi-objective design optimization, to realize a structural design to improve the weight and vibration performances of the knuckle - a car suspension component - considering various load conditions and vibration characteristics. In the approximate multi-objective optimization process, a regression meta-model was generated using the response surfaces method (RSM), while Kriging and back-propagation neural network (BPN) methods were applied for interpolation meta-modeling. The Pareto solutions, multi-objective optimal solutions, were derived using the non-dominated sorting genetic algorithm (NSGA-II). In terms of the knuckle design considered in this study, the characteristics and influence of the meta-model on multi-objective optimization were reviewed through a comparison of the approximate optimization results with the meta-models and the actual optimization.

Candidate Points and Representative Cross-Validation Approach for Sequential Sampling (후보점과 대표점 교차검증에 의한 순차적 실험계획)

  • Kim, Seung-Won;Jung, Jae-Jun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.55-61
    • /
    • 2007
  • Recently simulation model becomes an essential tool for analysis and design of a system but it is often expensive and time consuming as it becomes complicate to achieve reliable results. Therefore, high-fidelity simulation model needs to be replaced by an approximate model, the so-called metamodel. Metamodeling techniques include 3 components of sampling, metamodel and validation. Cross-validation approach has been proposed to provide sequnatially new sample point based on cross-validation error but it is very expensive because cross-validation must be evaluated at each stage. To enhance the cross-validation of metamodel, sequential sampling method using candidate points and representative cross-validation is proposed in this paper. The candidate and representative cross-validation approach of sequential sampling is illustrated for two-dimensional domain. To verify the performance of the suggested sampling technique, we compare the accuracy of the metamodels for various mathematical functions with that obtained by conventional sequential sampling strategies such as maximum distance, mean squared error, and maximum entropy sequential samplings. Through this research we team that the proposed approach is computationally inexpensive and provides good prediction performance.

Prediction of Galloping Accidents in Power Transmission Line Using Logistic Regression Analysis

  • Lee, Junghoon;Jung, Ho-Yeon;Koo, J.R.;Yoon, Yoonjin;Jung, Hyung-Jo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.969-980
    • /
    • 2017
  • Galloping is one of the most serious vibration problems in transmission lines. Power lines can be extensively damaged owing to aerodynamic instabilities caused by ice accretion. In this study, the accident probability induced by galloping phenomenon was analyzed using logistic regression analysis. As former studies have generally concluded, main factors considered were local weather factors and physical factors of power delivery systems. Since the number of transmission towers outnumbers the number of weather observatories, interpolation of weather factors, Kriging to be more specific, has been conducted in prior to forming galloping accident estimation model. Physical factors have been provided by Korea Electric Power Corporation, however because of the large number of explanatory variables, variable selection has been conducted, leaving total 11 variables. Before forming estimation model, with 84 provided galloping cases, 840 non-galloped cases were chosen out of 13 billion cases. Prediction model for accidents by galloping has been formed with logistic regression model and validated with 4-fold validation method, corresponding AUC value of ROC curve has been used to assess the discrimination level of estimation models. As the result, logistic regression analysis effectively discriminated the power lines that experienced galloping accidents from those that did not.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.