• 제목/요약/키워드: the Flynn & Wall expression

검색결과 3건 처리시간 0.016초

열중량 분석에 의한 DGEBA/MDA/PGE-AcAm/CTBN계의 열적 안정성 평가 (Estimation of Thermal Stability for DGEBA/MDA/PGE-AcAm/CTBN System by TG Analysis)

  • 이재영;최형기;심미자;김상욱
    • 한국재료학회지
    • /
    • 제7권3호
    • /
    • pp.229-233
    • /
    • 1997
  • Diglycidyl ether of bisphenol A(DGEBA)/4,4'-methylene dianiline(MDA)/phenyl glycidyl ether(PGE)-acetamide(AcAm)/carboxyl-terminated acrylonitrile butadiene copolymer(CTBN) 계의 열적 안정성을 평가하기 위해 열중량 분석법(TG)을 사용하였다. 활성화 에너지를 구하기 위해 Freeman & Carrol, kissinger, Flynn & Wall 식을 사용하였다. Freeman & Wall 식을 이용하여 구한 활성화 에너지는 112.9 kJ/mol, Kissinger 식에 의한 값은 151.5kJ/mol 이었으며, Flynn & Wall식에 의해 구한 값은 168.3 kJ/mol 이었다.

  • PDF

Comparison Study of Thermal Decomposition Characteristics of Wattle & Pine Tannin-based Adhesives

  • Kim, Sumin;Lee, Young-kyu;Kim, Hyun-Joong;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.34-41
    • /
    • 2002
  • This study investigated the thermogravimetric analysis of two types of cured tannin-based adhesives from wattle and pine, with three hardeners of paraformaldehyde, hexamethylenetetramine and TN (tris(hydroxyl)nitromethan), at a temperature of 170℃ and a heating rate of 5, 10, 20 and 40℃/min for 10 minutes. The 5 minutes cured wattle tannin-based adhesive with each hardener at 170℃ was also tested to compare the degree of curing. It was found that thermogravimetric analysis could be used to measure the degree of curing of a thermosetting adhesive. The TG-DTG curves of all the adhesive systems were similar and showed three steps in a similar way to a phenolic resin. This means that each adhesive system is well cross-linked. However, a high thermal decomposition rate was shown at 150 to 400℃ in the case of the pine tannin sample with TN (tris(hydroxyl)nitromethan). The Flynn & Wall expression was used to evaluate the activation energy for thermal decomposition. As the level of conversion (𝛼) increased, the activation energy of each system increased. The activation energy of the wattle tannin-based adhesive with paraformaldehyde was higher than the others.

Thermogravimetric Analysis of Rice Husk Flour for a New Raw Material of Lignocellulosic Fiber-Thermoplastic Polymer Composites

  • Kim, Hyun-Joong;Eom, Young-Guen
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권3호
    • /
    • pp.59-67
    • /
    • 2001
  • Rice husk flours were analyzed by chemical composition and thermogravimetric methods in nitrogen atmosphere to discuss its feasibility as a raw material for manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite. It was revealed in the chemical composition analysis that rice husk flour was composed of moisture, 5.0%; lignin, 21.6%; holocellulose, 60.8%; ash, 12.6%. In the thermogravimetric analysis (TGA), thermal decomposition behavior of rice husk flour from room temperature to $350^{\circ}C$ was similar to that of wood flour, but rice husk flour was more thermally stable from 350 to $800^{\circ}C$ than wood flour because of higher silica content in the rice husk flour and smaller particle size of rice husk flour. The activation energy of thermal decomposition was evaluated using Flynn & Wall expression. As the thermal decomposition proceeded in rice husk flour, the activation energy of thermal decomposition appeared almost constant up to ${\alpha}=0.25$, but thereafter increased. Activation energy of thermal decomposition in wood flour, however, decreased steeply up to ${\alpha}=0.3$, but thereafter remained almost constant. From the results, rice husk flour was thought be a substitute for wood flour in manufacturing agricultural lignocellulosic fiber-thermoplastic polymer composite in the aspect of thermal decomposition.

  • PDF