• Title/Summary/Keyword: the Energy of Shapes

Search Result 710, Processing Time 0.03 seconds

Wear Mechanism of Tube Fretting Affected by Support Shapes

  • Kim, Hyung-Kyu;Lee, Young-Ho;Yoon, Kyung-Ho;Kang, Heung-Seok;Song, Kee-Nam;Ha, Jae-Wook
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.68-73
    • /
    • 2002
  • A fretting wear experiment in roam temperature air was performed to evaluate the wear mechanism of fuel rod using a fretting wear tester, which has been developed for experimental study, The main focus was to compare the wear behaviors of fuel rod against support springs with different contact contours (i.e. concave and convex). Wear volume, degree or surface hardening and adhesion tendency of wear particle were examined by the surface roughness tester. The result indicated that with a change of contact condition from contact force of 5 N to 0.1 mm gap, the wear volume of tube increased in the condition of concave spring, but slowly decreased in convex spring. From the results of SEM observation, wear mechanism of each test condition was also dependent on the spring shapes. The wear mechanism of each test condition in room temperature air is discussed.

Experimental investigation of a method for diagnosing wall thinning in an artificially thinned carbon steel elbow based on changes in modal characteristics

  • Byunyoung Chung ;Jonghwan Kim ;Daesic Jang;Sunjin Kim;Youngchul Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.947-957
    • /
    • 2023
  • Curved cylindrical structures such as elbows have a non-uniform thickness distribution due to their fabrication process, and as a result have a number of complex mode shapes, including circumferential and axial nodal patterns. In nuclear power plants, material degradation is induced in pipes by flow accelerated erosion and corrosion, causing the wall thickness of carbon steel elbows to gradually thin. The corresponding frequencies of each mode shape vary according to the wall thinning state. Therefore, the thinning state can be estimated by monitoring the varying modal characteristics of the elbow. This study investigated the varying modal characteristics of artificially thinned carbon steel elbows for each thinning state using numerical simulation and experimental methods (MRIT, Multiple Reference Impact Test). The natural frequencies of specified mode shapes were extracted, and results confirmed they linearly decreased with increasing thinning. In addition, by comparing single FRF (Frequency Response Function) data with the results of MRIT, a concise and cost effective thinning estimation method was suggested.

Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction

  • Kang, Taehong;Lee, Jiyeon;Kim, Jong Gyeong;Pak, Chanho
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.137-145
    • /
    • 2021
  • Among the non-precious metal catalysts, iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) under alkaline and acidic conditions. In this study, the nano replication method using mesoporous silica, which features tunable primary particle sizes and shape, is employed to prepare the mesoporous Fe-N/C catalysts with different shapes. Platelet SBA-15, irregular KIT-6, and spherical silica particle (SSP) were selected as a template to generate three different kinds of shapes of the mesoporous Fe-N/C catalyst. Physicochemical properties of mesoporous Fe-N/C catalysts are characterized by using small-angle X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy images. According to the electrochemical evaluation, there is no morphological preference of mesoporous Fe-N/C catalysts toward the ORR activity with half-cell configuration under alkaline electrolyte. By implementing X-ray photoelectron spectroscopy analysis of Fe and N atoms in the mesoporous Fe-N/C catalysts, it is possible to verify that the activity towards ORR highly depends on the portions of "Fe-N" species in the catalysts regardless of the shape of catalysts. It was suggested that active site distribution in the Fe-N/C is one important factor towards ORR activity.

Delamination identification of laminated composite plates using measured mode shapes

  • Xu, Yongfeng;Chen, Da-Ming;Zhu, Weidong;Li, Guoyi;Chattopadhyay, Aditi
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.195-205
    • /
    • 2019
  • An accurate non-model-based method for delamination identification of laminated composite plates is proposed in this work. A weighted mode shape damage index is formulated using squared weighted difference between a measured mode shape of a composite plate with delamination and one from a polynomial that fits the measured mode shape of the composite plate with a proper order. Weighted mode shape damage indices associated with at least two measured mode shapes of the same mode are synthesized to formulate a synthetic mode shape damage index to exclude some false positive identification results due to measurement noise and error. An auxiliary mode shape damage index is proposed to further assist delamination identification, by which some false negative identification results can be excluded and edges of a delamination area can be accurately and completely identified. Both numerical and experimental examples are presented to investigate effectiveness of the proposed method, and it is shown that edges of a delamination area in composite plates can be accurately and completely identified when measured mode shapes are contaminated by measurement noise and error. In the experimental example, identification results of a composite plate with delamination from the proposed method are validated by its C-scan image.

Effect of Surface Energy Anisotropy on the Equilibrium Shape of Sapphire Crystal

  • Choi, Jung-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.907-911
    • /
    • 2002
  • Using the two-dimensional Wulff plot, the equilibrium shape of a sapphire crystal was investigated as a function of surface energy anisotropy. Depending on the relative values of surface energy for various facet planes, the projected shape of equilibrium sapphire was determined to be rectangle, parallelogram, hexagon or octagon. The results are compared with the experimentally observed shapes of internal cavities of submicron range in sapphire single crystals.

THREE-DIMENSIONAL NUMERICAL SIMULATIONS OF A PHASE-FIELD MODEL FOR ANISOTROPIC INTERFACIAL ENERGY

  • Kim, Jun-Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.453-464
    • /
    • 2007
  • A computationally efficient numerical scheme is presented for the phase-field model of two-phase systems for anisotropic interfacial energy. The scheme is solved by using a nonlinear multigrid method. When the coefficient for the anisotropic interfacial energy is sufficiently high, the interface of the system shows corners or missing crystallographic orientations. Numerical simulations with high and low anisotropic coefficients show excellent agreement with exact equilibrium shapes. We also present spinodal decomposition, which shows the robustness of the pro-posed scheme.

Development of Al Crash Box for High Crashworthiness Enhancement (고충돌에너지 흡수용 알루미늄 크래쉬박스 개발)

  • Yoo, J.S.;Kim, S.B.;Lee, M.Y.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • Crash box is one of the most important automotive parts for crash energy absorption and is equipped at the front end of the front side member. The specific characteristics of aluminum alloys offer the possibility to design cost-effective lightweight structures with high stiffness and excellent crash energy absorption potential. This study deals with crashworthiness of aluminum crash box for an auto-body with the various types of cross section. For aluminum alloys, A17003-T7 and A17003-T5, the dynamic tensile test was carried out to apply for crash analysis at the range of strain from 0.003/sec to 200/sec. The crash analysis and the crash test were carried out for three cross sections of rectangle, hexagon and octagon. The analysis results show that the octagon cross section shape with A17003-T5 has higher crashworthiness than other cross section shapes. The effect of rib shapes in the cross section is important factor in crash analysis. Finally, new configuration of crash box with high crash energy absorption was suggested.

Topology Optimization Technique using Strain Energy Distributions induced by the Mode Shapes associated with Natural Frequencies (구조물의 자유진동모드로 유발되는 변형에너지 분포를 이용한 위상최적화기법)

  • Lee, Sang-Jin;Bae, Jung-Eun;Park, Gyeong-Im
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1015-1018
    • /
    • 2006
  • In this paper, new topology optimization technique is proposed. It mainly uses the strain energy distributions induced by the mode shapes associated with natural frequencies of the structure and so we can implicitly consider the dynamic characteristics of the structure in the topology optimization process. The strain energy to be minimized is employed as the objective function and the initial volume of structures is adopted as the constraint function. The resizing algorithm devised from the optimality criteria method is used to update the hole size of the cell existing in each finite element. The cantilever beam problem is adopted to test the proposed techniques. From numerical test, it is found to be that the optimum topology of the cantilever produced by the proposed technique has a hugh increase of natural frequency value and the technique is very effective to maximize the fundamental frequency of the structure.

  • PDF

Performance comparisons of the glass evacuated tube solar collectors of different absorber tubes (진공관형 태양열 집열기의 흡수관 형상 변화에 따른 성능 비교)

  • Kim, Yong;Seo, Tae-Beom;Yun, Seong-Eun;Kim, Young-Min
    • New & Renewable Energy
    • /
    • v.2 no.1 s.5
    • /
    • pp.56-65
    • /
    • 2006
  • The thermal performance of glass evacuated tube solar collectors are numerically and experimentally investigated. Four different shapes of solar collectors are considered and the performances of these solar collectors are compared. Dealing with a single collector tube, the effects of not only the shapes of the absorber tube but also the incidence angle of solar irradiation (beam irradiation) on thermal performance of the collector are studied. However, the solar irradiation consists of the beam irradiation as well as the diffuse irradiation. Also, the interference of solar irradiation and heat transfer interaction between the tubes exist in an actual solar collector, These effects are considered in this study experimentally and numerically. The accuracy of the numerical model is verified by the experimental results. The result shows that the thermal performance of the absorber used a plate fin and U-tube is the best.

  • PDF