• Title/Summary/Keyword: the Center of Gravity

Search Result 879, Processing Time 0.03 seconds

Variation of Muscle Activity and Balance of the Lower Extremity by Deformed in Shoe Out-soles during One-leg Stance

  • Won-Jun Choi;Min-Je Jo;Doochul shin
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.2
    • /
    • pp.161-166
    • /
    • 2023
  • Objective: The purpose of the study was to investigate the effect of shoe sole deformation on the muscle activity and balance of the lower extremities when standing on one foot. Design: Crossed-control group study Methods: A total of 18 healthy adults participated in this study. 9 participants with normal shoe and 9 participants with deformed in shoe out-soles (wear shoes) were included. Muscle activity of the tibialis anterior, fibularis longus and gluteus medius during one leg standing was measured using a electromyography. A balance board was used to evaluate balance ability when standing on one leg. The balance ability when standing on one leg was measured by the sway speed and distance of the center of gravity. Results: Muscle activity of the tibialis anterior, fibularis longus and gluteus medius was no significant difference between groups (P > 0.05). Balance ability when standing on one leg was significantly different from the group wearing normal shoes in all variables related to the sway distance and sway speed of the center of gravity. Conclusions: Through this study, the wear of the outer sole of the shoe indirectly confirmed the effect on the wearer's lower extremity muscle activity and balance ability when standing on one foot. These results of this study are expected to be used as basic data for future studies on shoe wear, lower extremity muscle activity and balance ability.

The Study of Structural Stability by Stacking Method of the Axial Blade (축류 블레이드의 스태킹 방식에 의한 구조 안정성 연구)

  • Jeong, Cheol-Young;Ko, Hee-Hwan;Park, Jun-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.46-51
    • /
    • 2012
  • This study is to confirm the deformation of blade when the location of stacking is moving. Also, it desire to determine the most stable location of stacking from the analysis. In the previous study, it is Known that moving the location of stacking is not influence to the aerodynamic performance. In this study SolidWorks premium 2010 SP4 is used for structure analysis. In reference blade and other 3 model analysis, the two mesh type is used, one is standard mesh type in SolidWorks, the other is curvature-based mesh type. The result of curvature-based mesh type is more stable than one of the standard mesh type regardless of mesh size, the number of mesh. The deformation of blade tip is the smallest, when the location of stacking is identical to the center of gravity of the blade section profile. So, if possible is design, this study recommends that the location of stacking is identical to the center of gravity the blade.

Do Roads Enhance Regional Trade? Evidence Based on China's Provincial Data

  • RAHMAN, Imran Ur;SHARMA, Buddhi Prasad;FETUU, Enitilina;YOUSAF, Muhammad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.657-664
    • /
    • 2020
  • We investigate the impact of roads and highways within the provinces on the regional trade of China using the augmented Gravity Model and theory of modeling trade. We take a panel data covering 31 provinces of China over 20 years period (1998-2017) for the estimations. We apply ARMA-OLS model, fixed and random effects, and robust findings by Hausman test. The results imply that road and highway lengths within the provinces have a significantly positive impact on the value of the province-wise exports. The positive impact is due to the fact the increased coverage of roads and highways increase accessibility to resources and mobility of goods and services within the regions. Moreover, employment in the transportation sector, per capita GDP and population of the provinces also illustrate positive and significant influence on regional exports and trade. The impact of China's WTO accession on regional exports has been positive, while the financial crisis has had a negative impact. The year dummies show that, in the years following the financial crisis, China was able to regress from the external shock as trade within the provinces increased. The increase in exports after financial crisis is mainly due to the government policies and support to every province.

Hovering Performance Improvement by Modifying COG of Underwater Robotic Platform (수중운항로봇 플랫폼의 무게중심 조정을 통한 제어성능 향상)

  • Bak, Jeongae;Kim, Jong-Won;Jin, Sangrok;Kim, Jongwon;Seo, TaeWon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.661-666
    • /
    • 2015
  • This paper presents control performance improvement by modifying center of gravity (COG) of an underwater robotic platform. To reduce the oscillation or to increase the positioning accuracy, it is important to accurately know the COG of an underwater robotic platform. The COG is determined by the three measured tilting angles of the platform in different postures. The tilting angle is measured while the platform is hanged by two strings. Using coordinate transformation, the plane of intersection is defined from the angle of the platform and the position of the string. The COG of the robotic platform is directly calculated by the intersected point in three defined planes. The measured COG is implemented to the control algorithm that is pre-designed in the previous research, and the empirical result on tilting gives 48.26% improved oscillation performance comparing to the oscillation result with the ideal COG position.

A Study on the Behavior of Spheroid Configuration Bobbin (회전타원체 보빈 형상의 거동에 관한 연구)

  • Kang, Seung-Hee;Ahn, Sung-Ho;Rim, One-Kwon;Kim, Hye-Ung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.717-724
    • /
    • 2010
  • The initial trajectory of a spheroid configuration bobbin for precision guidance has been investigated by analyzing its aerodynamic load and six-degree-of-freedom motion. The effects of changes in the spheroidal head configuration, flow angle and lateral center-of-gravity offset are numerically studied using the commercial software "FLUENT". A wind tunnel test is also conducted to validate the numerical scheme and to examine effect of the Reynolds number on the flow around the bobbin. It is shown that the size of the separation bubble formed on the surface decreases significantly when the Reynolds number is varied between 110,000 and 140,000. At a zero flow angle, an oblate spheroidal head shows relatively moderate rotation while a prolate spheroidal head shows rapid rotation. The bobbin with a spherical head shape has little effect on the flow direction; however, the oblate bobbin is sensitive to the flow angle. The roll motion of the bobbin is greatly influenced by the lateral center-of-gravity offset and maximum dispersion is observed at half of the radius.

The Study on Integration of Gravities Anomaly in South Korea and Its Vicinities by Using Spherical Cap Harmonic Analysis (구면캡 조화분석을 이용한 남한 및 그 주변지역의 중력이상 통합에 관한 연구)

  • Hwang, Jong-Sun;Kim, Hyung-Rae;Kim, Chang-Hwan;You, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.211-217
    • /
    • 2008
  • The gravity anomalies that observed by ground and shipborne survey and calculated from GRACE satellite are combined by using spherical cap harmonic analysis (SCHA). In this study, ground gravity data from Korea Institute of Geoscience and Mineral Resource(KIGAM) and shipborne gravity data from National Ocean Research Institute(NORI) and Korea Ocean Research and Development institute(KORDI) were used. L-2 level GRACE Gravity Model (GGM02C) was also used for satellite gravity anomaly. The ground and shipborne surveyed data were combined and gridded using Krigging method with 0.05 degree interval and GRACE data were also gridded using the same method with 0.05 degree to harmonize with the resolution of SCHA that has coefficient up to 80. Generalized Minimal Residual(GMRES) inversion method was implemented for calculating the coefficients of SCHA using the gridded ground and satellite gravity anomalies that had 0 km and 50 km altitude, respectively. The results of inversion method showed good correlation of 0.950 and 0.995 with original ground and satellite data. The gravity anomaly using SCHA satisfies Laplace's equation, therefore, using these SCHA coefficients, gravity anomaly can be calculated at any altitude. In this study, gravity anomaly was calculated from 10 km to 60 km altitude and each altitude, very stable results were shown. The ground and shipborne gravity data that have higher resolution and satellite data in long wavelength are harmonized well with SCHA coefficients and successfully applied in South Korea area. If more continuous survey and muti-altitude surveyed data like airborne data available, more precise gravity anomaly can be acquired using SCHA method.

A Study on the Minimum Weight Difference Threshold in a VR Controller with Moment Variation (VR 컨트롤러의 모멘트 변화에 따른 최소 무게 차이 인지에 관한 연구)

  • Baek, Mi-Seon;Kim, Huhn
    • Journal of Korea Game Society
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2020
  • This study is about the VR controller that can provide an enhanced experience in VR by augmenting the sense of weight. In this study, the method of changing the center of gravity of the controller was used as a means of transmitting the sense of weight. The experiment was carried out with a device that could change the center of gravity to find the minimum distance at which people can perceive the difference in weight. The results showed that the weight difference between the two stimuli can be perceived at a distance of about 5 cm regardless of the position of the starting stimulus.

Aerodynamic Design of the Solar-Powered High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV)

  • Hwang, Seung-Jae;Kim, Sang-Gon;Kim, Cheol-Won;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.132-138
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53kg, the structure weight is 22kg, and features a flexible wing of 19.5m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, $V_{cr}=6m/sec$, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight because of the EAV-3 is the solar-electric driven UAV. Thus, static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing with the previously designed the EAV-2 and EAV-2H/2H+ to upgrade the flight performance of the EAV-3.

Steering System in a Self-Balancing Electric Scooter (역진자형 전동 스쿠터의 조향 시스템)

  • Choi, Yong Joon;Ryoo, Jung Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.942-949
    • /
    • 2014
  • In this paper, a new steering system for a self-balancing electric scooter is proposed with an intuitive steering command input method, where the steering command is generated from the rider's motion of shifting body to move the center of gravity toward the rotational direction. For the purpose, weight distributions on the rider's feet are measured using force sensors placed beneath the rider's feet, and the difference is applied to a steering control system. Stability of the steering system and resultant radius of gyration is investigated by modeling the steering system in consideration of the rider's motion and centrifugal force. The proposed steering system is applied to experiments, and the results are presented to prove the validity of the proposed method.

Effect of Induced Leg Length Discrepancy on the Limitation of Stability and Static Postural Balance (유도된 다리길이 차이가 안정성한계와 정적 자세균형에 미치는 영향)

  • Han, Jin-Tae
    • PNF and Movement
    • /
    • v.16 no.2
    • /
    • pp.267-273
    • /
    • 2018
  • Purpose: Leg length discrepancy (LLD) is one of the risk factors for postural imbalance. This study aimed to investigate the effect of induced leg length discrepancy on the limitation of stability (LOS) and static postural balance. Methods: Thirteen adults (males, 7; females 6) participated in this study. The LOS and static postural balance [sway length, sway area, and sway velocity of center of gravity (COG) displacement] were measured by the balance trainer system. The subjects were asked to move the COG for the anterior, posterior, and left and right directions maximally and to keep standing on the platform with and without induced LLD for 30 s in the open and closed eyes conditions, respectively. The LLD was artificially induced to 2 cm using insole. Wilcoxon test was used to compare the LOS and the static postural balance between with and without induced LLD. Results: The anterior and posterior LOS significantly decreased in induced LLD (p<0.05), and the left and right LOS were not significantly different between with and without LLD (p>0.05). Sway length, sway area, and sway velocity of the COG displacement significantly decreased in induced LLD (p<0.05). Conclusion: This study suggests that induced LLD could decease the antero-posterior LOS and increased the static postural balance. Therefore, the LLD could disturb the postural balance.