본 연구에서는 위성영상 기반의 북극의 해빙 농도 시계열 데이터를 이용하여 베링해의 해빙 상태가 척치해 해빙 농도 변화의 전조로서 작용할 수 있는지를 실험하였다. 해빙 농도 자료는 1982년부터 2017년의 36년간의 월평균 시계열 데이터로 이뤄져 있으며, 베링해의 해빙 농도와 척치해 해빙 농도 사이의 관계성을 전송 엔트로피 측정을 통해 분석하였다. 전송 엔트로피는 두 개의 확률변수 또는 신호 간의 비선형적 연관성을 파악하게 해주는 동시에 변수 사이의 시간 간격 조절을 통해 인과관계를 추정할 수 있는 측정이다. 해빙 농도를 대상으로 한 측정 결과, 베링해의 과거 3, 5, 6개월 전의 해빙 농도값이 척치해 해빙의 변화에 관련되어 있음을 알 수 있었다. 특히, 베링해의 해빙 농도값이 극소를 나타냈을 때, 5개월 후의 척치해의 해빙 농도는 감소될 확률이 약 70%로 나타났다. 이는 태평양에서 베링해협을 통해 북극해로 유입되는 해류가 베링해의 해빙 농도를 감소시킨 후 해협을 통해 척치해로 이동하여 해빙을 녹이는 과정에 비롯한 것으로 사료된다. 향후 위성데이터에 정보 이론으로 접근하는 이 연구를 더 발전시켜 어떤 시점과 시간적 스케일로 특이 패턴이 발생하는지 조사하고 그 기간에 관련된 해양-대기의 패턴 또는 사건들을 분석하여, 떨어진 두 지역의 해빙 농도 상태에 내재된 연관성에 대한 심층적 이해가 가능할 것이다.
A newly designed Cytophaga-Flavobacteria-specific 16S rRNA gene primer pair was employed to investigate the CF community structure in the Bering Sea, revealing a previously unknown and unexpected high CF diversity in this high latitude cold sea. In total, 56 clones were sequenced and 50 unique CF 16 rRNA gene fragments were obtained, clustering into 16 CF subgroups, including nine cosmopolitan subgroups, five psychrophilic subgroups, and two putatively autochthonous subgroups. The majority of sequences (82%) were closely related to uncultured CF species and could not be classified into known CF genera, indicating the presence of a large number of so-far uncultivated CF species in the Bering Sea.
The materials were obtained in the eastern Gulf of Alaska and the south- eastern Bering Sea during the cruise of the research vessel, Ohdae San, from July to October 1978. A total of 76 samples were taken by NORPAC net from a depth of 200 meters or less in coastal areas. 1. The surface water temperature in the coastal waters, varing from 9 to 10$^{\circ}C$, was lower than that in offshore waters which varied from 10 to 12.9$^{\circ}C$ in the eastern Gulf of Alaska. Thermocline was formed in the 30∼50 meter layer. Salinity of the coastal waters of Kenai Peninsula and Kodiak was 30 which was slightly lower than that of offshore. 2. The water temperature of the surface layer down to 30 meters varied from 7 to 10$^{\circ}C$ and from 1 to 9$^{\circ}C$ in the layer below 30 meters in the south-eastern Bering Sea. Meandering thermal front spread from the Alaska Peninsula to St. Matthew Island by way of St. Paul, and a thermocline was found at the 30∼50 meter layer Salinity ranged from 31.0 to 33.0 and that of northern and coastal waters was little lower than that of offshore. 3. Zooplankton biomass fluctuated from 0.1 to 23.6cc/10㎥ in the eastern Gulf of Alaska and 2.0 to 26.1cc/10㎥ in the south-eastern Bering Sea. Plankton was rich in the following areas, the inshore Kodiak waters, the northern Bering Sea, the Coastal waters and waters adjacent to Alutian islands however, poor in the central Bering Sea. In general, the south-eastern Bering Sea has a higher concentration of plankton volume than the eastern Gulf of Alaska. 4. Twenty three species representing 17 genera of copepods were identified from the samples. These were mostly composed of the cold water species, such as Pseudocalanus minutus, Acartia longiremis, Metridia lucens and Eucalanus bungii var. bungii. 5. The cold oceanic species were composed of Calanus cristatus, C.plumchrus, Metridia lucens, Eucalanus bungii var. bungii and Scolecithricella minor. The cold neritic species were Centropages abdominalis, Pseudocalanus minutus, Acartia longiremis, Eurytemora herdmanii, Pontella pulvinata, P. longipedata and Tortanus discaudatus. On the other hand, the warm oceanic species were Calanus tenuicornis and Oithona plumifera. The cosmopolitan species were Calanus finmarchicus and Oithona similis. 6. It was suggested that the cold oceanic species, Eucalanus bungii var. bungii and Metridia lucens in the south-eastern Bering Sea can be recommended as a valuable indicator species for finding the fishing grounds of demersal fish such as pollock and yellowfin sole in this area.
Food habits of Alaska plaice, Pleuronectes quadrituberculatus, and ecological interactions of this species with yellowfin sole, Limanda aspera, and rock sole, Lepidopsetta bilineata, in the eastern Bering Sea were studied. Alaska plaice mainly feed on polychaetes regardless of sex and size of fish. However, it was shown that food differed by sampling area. Feeding did not occur at night. Food competition seems to be negligible among the three shallow water fiatfish species inhabiting the eastern Bering Sea due to differences in food spectra or spatial distribution.
The abundance, biomass and distribution of phytoplankton, bacterioplankton and heterotrophic protists in the Bering Sea were investigated from July to August 1999. Chlorophyll a concentrations in the surface waters ranged from 0.16 to $3.79{\mu}g\;l^{-1}$ Nano-phytoplankton were found to constitute from 63 to 98% of the total phytoplankton biomass, and were clearly the dominant primary producers. The biomass of bacterioplankton in the surface layers varied from 1.46 to $20.2{\mu}g\;C\;l^{-1}$ and accounted for 30% of the total phytoplankton biomass. The biomass of bacterioplankton integrated over a depth of 0 to 100m averaged 65.4% of the total phytoplankton biomass. The surface biomass of heterotrophic protists ranged from 1.2 to $27.4{\mu}g\;C\;l^{-1}$, and was within the same order of magnitude as that of bacterioplankton. Of the total biomass of heterotrophic protists in the upper 100m of the water column, 65% was attributed to protists in the nano-size class. The results of this study suggest that bacteria and nano-protists are important components of the planktonic community in the Bering Sea during the summer season. The abundance of bacterioplankton and planktonic protists decreased from the western to northeastern and eastern regions of the Bering Sea. The abundance of these organisms also decreased with depth. The available evidence suggests that variation in the abundance and distribution of these organisms may be affected by water currents and vertical temperature variation in the Bering Sea.
A piston core (MR06-04 PC23A) collected from the northern continental slope in the central Bering Sea has recorded the high-resolution millennial-scale variation of calcium carbonate ($CaCO3$) content during the last 65 kyr. An estimation of the age of the core sediments was carried out by using the lithologic correlation of the deglacial laminated layers with a neighboring core (HLY02023JPC), complementing the last appearance datum of both Lychnocanoma nipponica sakaii (54 kyr) and Amphimelissa setosa (85 kyr). The probable age of core MR06-04 PC23A was approximately younger than 65 kyr. Two distinct events of a significant increase of $CaCO3$ in the deglacial laminated sediments clearly correspond to MWP1A and MWP1B in the Bering Sea (Gorbarenko et al. 2005) and to T1ANP and T1BNP in the North Pacific (Gorbarenko 1996). These pronounced peaks of $CaCO3$ contents result from the elevated carbonate production in the surface water and the subsequent weakened dilution due to terrestrial input, along with an enhanced oxygen minimum zone. The $CaCO3$ contents are low (${\sim}2%$) during the last glacial period mainly because of a low carbonate production caused by an expanded sea-ice cover and an increased dilution by terrigenous particles due to their closer distance to the continent during the sea-level low stand. The occurrence of seven distinct $CaCO3$ peaks in core MR06-04 PC23A is remarkable during MIS 3 and MIS 4, and they most likely correlate to the short-term millennial Dansgaard-Oeschger events.
The characteristics of the oceanographic environment in the Aleutian Basin of the Bering Sea during spring in 1996, 1997, and 1999 were clarified. An investigation of the water properties revealed five basic layers in the Bering Sea during spring: (1) a surface layer of warm and low-salinity water induced by solar heating, (2) a subsurface layer of cold and low-salinity water propagated slowly by heat from the surface layer, (3) a thermocline layer where salinity was constant but temperature sharply decreased, (4) a temperature inversion layer, and (5) a deep layer with a gradual decrease in temperature and increase in salinity toward the bottom. The ranges of water temperature and salinity were $1.8-5.5^{\circ}C$ and 31.81-34.08 in 1996, $1.5-7.2^{\circ}C$ and 31.9-34.06 in 1997, and $0.5-5.6^{\circ}C$ and 32.0-34.11 in 1999, respectively. The water temperature of the surface layer was approximately $1.6^{\circ}C$ higher in 1997 than in 1996 and 1999. The lowest temperature at a depth of 100-150 m was about $1^{\circ}C$ lower in 1999 than in 1996 and 1997. Nutrient levels (nitrate, phosphate, and silicate) contributing to the control of the growth of phytoplankton were higher in the Aleutian Basin than in the eastern continental shelf and Bogoslof Island area. This was closely associated with the phytoplankton distribution. Nutrient concentrations were lowest at a depth of 25 m. The high primary production at that depth was confirmed from the vertical distribution of chlorophyll a. Chlorophyll a levels were above $4.0{\mu}L^{-1}$ in some areas in 1996 and 1999, but below $2.0{\mu}L^{-1}$ in most areas in 1997. Zooplankton density was about three times higher in 1999 than in 1997.
A synthesis of early exploration and the discovery of marine algae in the upper North Pacific and Bering Sea is presented covering the period from the late 1730s to around 1900. Information is provided about these early efforts to gather natural objects, including seaweeds, and names of these algae are enumerated. The first collections of marine algae in this broad region were those made by steller and Kracheninnkov from the Kamchatka Peninsula,Russia,during the Second Kamchatkan Expedition (1735-1742) and were described by Gmelin (1768). The first known algal collections in Alaska were those made byMerck in his 1790-1791 visits to Unalaska Island during the Billings expedition (1785-1794). British-sponsored expeditions for commercial purposes and for exploration and dis-covery allowed surgeon-naturallist Archibald Menzies to garher seaweeds that Dawson Turner and others worked up back in Europe. Several of the Russian Expeditions during the first half of the 18'!' century had naturalists aboard. the first Russian circumnavigation of the globe (1803-1806), with the ships 'Nadeshda' and 'Neva,' under the com-mand of Capt. Adam von Krusenstern had naturalists Langsdorff, Tilesius, and Horner, all of whom collected sea-weeds. The naturalist Adelbert Chanmisso accompanied the Romanzof Expedition (1815-1818) on the Russian vessel 'Rurik' under the command of Otto von Kotzebue and made collections of algae in the Aleutians as well as in the Kurils and Kamchatka. The Lutke expedition of 1826-1829 consisted of thw ships. Feodor Lutke was in command of the 'Seniavin' with K.H. Mertens aboard as physician-naturalist, and the 'Moller' was under the command of staniukovich accompanied by the naturalist G. Kastalsky. The first American-sponsored scientific expedition (1838-1842) was that commanded by Charles Wilkes, and the algae that were collected were worked up by J.W. Bailey and W.H. Harvey. The Russian naturalist Ilya Voznesenskii spent the period 1839-1849 in Russian Americ (Alaska and northern California) energetically traveling and making numerous collections of natural objects as well as ethno-graphic artefact. His algae were described by F.j. Ruprecht back in St. petersbung. The Swedish scientific vessel, the'Vega' (1878-1880), was under the command of Nordenskiold. The naturalist F.R. Kjellman made algal collections from Port Clarence, Alaska, as well as from bering Island and St. Lawrence Island in the Bering sea. The Harriman Alaskan Expedition in the summer of 1899, with the ship 'George W. Elder,' was sponsored by railroad magnate E.H. Harriman of New York City and had several scientific personnel aborad, including the phycologist De Alton Saunders. Algae were collected in Alaska and Washington. During the same summer of 1899 a scientific expedition organized by the University of California and including W.L. Jepson, L.E. Hunt, A.A Lawson, and W.A. Setchell as participants also visited Alaska and made collections of alage from various locations.
베링해 공해 및 알라스카만에서 표본된 명태의 동일 개체로부터 비늘과 이석을 사용하여 연령사정한 결과를 비교, 고찰하였다. 베링해 공해 명태 44~54cm 범위의 개체에 대한 연령사정 결과, 비늘연령은 4~9세, 이석연령은 4~18세로 나타났다. 동일개체의 두 연령형질간에 1~11세까지의 큰 차이를 보였으며, 특히 이식의 연령이 증가할수록 그 차이가 더욱 크게 나타났다. 알라스카만 명태 22~59cm 범위의 개체로부터 비늘 연령은 2~9세, 이석연령은 2~11세로 나타났다. 두 연령형질간의 연령사정 결과는 6세까지는 잘 일치하였고, 7세 이상에서는 이석에 의한 연령이 1~7세까지 높게 나타났다.
Annual and monthly pollock catches, CPUE and fishing grounds in the high seas of Bering Sea between 1984 and 1992 were analyzed for centroid distribution and bivariate ellipses of trawlers of South Korea, Japan, Poland and China. The catch amount differed by country as 56.1%, 21.7%, 20.4% and 1.8% were caught by Japan, Korea, Poland and China respectively. Japan recorded the highest mean CPUE at 5.7 ton/hour while it was 4.3 ton/hour for Poland, 3.9 ton/hour for Korea and 2.4 ton/hour for China. Cumulative catch varied by month, with the minimum of 137,000 ton in March and the maximum of 848,000 ton in December. Monthly mean of CPUE was the lowest in February (2.0 ton/hour) and the highest in November (6.3 ton/hour). The centroid distribution of monthly fishing ground was located at a southern spot ($56^{\circ}$ 05'N, $178^{\circ}$ 55'E) in January, and it moved anti-clockwise toward $56^{\circ}$ 37'N, $178^{\circ}$ 24'E in December. Fishing grounds were scattered more by the east-west direction than by the south-north direction. The fishing grounds were similar for Korean, Japanese and Polish trawlers, but Chinese trawlers that fished only from July to December showed distinctively different fishing grounds from the others.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.