• 제목/요약/키워드: the principal component analysis

검색결과 2,531건 처리시간 0.027초

Sound Based Machine Fault Diagnosis System Using Pattern Recognition Techniques

  • Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.134-143
    • /
    • 2017
  • Machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines. Generally, it is very difficult to diagnose a machine fault by conventional methods based on mathematical models because of the complexity of the real world systems and the obvious existence of nonlinear factors. This study develops an automatic machine fault diagnosis system that uses pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The sounds emitted by the operating machine, a drill in this case, are obtained and analyzed for the different operating conditions. The specific machine conditions considered in this research are the undamaged drill and the defected drill with wear. Principal component analysis is first used to reduce the dimensionality of the original sound data. The first principal components are then used as the inputs of a neural network based classifier to separate normal and defected drill sound data. The results show that the proposed PCA-ANN method can be used for the sounds based automated diagnosis system.

주성분 분석을 이용한 DAMADICS 공정의 이상진단 모델 개발 (Principal Component Analysis Based Method for a Fault Diagnosis Model DAMADICS Process)

  • 박재연;이창준
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.35-41
    • /
    • 2016
  • In order to guarantee the process safety and prevent accidents, the deviations from normal operating conditions should be monitored and their root causes have to be identified as soon as possible. The statistical theories-based method among various fault diagnosis methods has been gaining popularity, due to simplicity and quickness. However, according to fault magnitudes, the scalar value generated by statistical methods can be changed and this point can lead to produce wrong information. To solve this difficulty, this work employs PCA (Principal Component Analysis) based method with qualitative information. In the case study of our previous study, the number of assumed faults is much smaller than that of process variables. In the case study of this study, the number of predefined faults is 19, while that of process variables is 6. It means that a fault diagnosis becomes more difficult and it is really hard to isolate a single fault with a small number of variables. The PCA model is constructed under normal operation data in order to get a loading vector and the data set of assumed faulty conditions is applied with PCA model. The significant changes on PC (Principal Components) axes are monitored with CUSUM (Cumulative Sum Control Chart) and recorded to make the information, which can be used to identify the types of fault.

주성분 분석 로딩 벡터 기반 비지도 변수 선택 기법 (Unsupervised Feature Selection Method Based on Principal Component Loading Vectors)

  • 박영준;김성범
    • 대한산업공학회지
    • /
    • 제40권3호
    • /
    • pp.275-282
    • /
    • 2014
  • One of the most widely used methods for dimensionality reduction is principal component analysis (PCA). However, the reduced dimensions from PCA do not provide a clear interpretation with respect to the original features because they are linear combinations of a large number of original features. This interpretation problem can be overcome by feature selection approaches that identifying the best subset of given features. In this study, we propose an unsupervised feature selection method based on the geometrical information of PCA loading vectors. Experimental results from a simulation study demonstrated the efficiency and usefulness of the proposed method.

Wavelet 압축 영상에서 PCA를 이용한 얼굴 인식률 비교 (Face recognition rate comparison using Principal Component Analysis in Wavelet compression image)

  • 박장한;남궁재찬
    • 전자공학회논문지CI
    • /
    • 제41권5호
    • /
    • pp.33-40
    • /
    • 2004
  • 본 논문에서는 웨이블릿 압축을 이용하여 얼굴 데이터베이스를 구축하고, 주성분 분석(Principal Component Analysis : PCA) 알고리듬을 이용하여 얼굴 인식률을 비교한다. 일반적인 얼굴인식 방법은 정규화된 크기를 이용하여 데이터베이스를 구축하고, 얼굴 인식을 한다. 제안된 방법은 정규화된 크기(92×112)의 영상을 웨이블릿 압축으로 1단계, 2단계, 3단계로 변환하고 데이터베이스를 구축한다. 입력 영상도 웨이블릿으로 압축하고 PCA 알고리듬으로 얼굴인식 실험을 하였다 실험을 통하여 제안된 방법은 기존 얼굴영상의 정보를 축소할 뿐만 아니라 처리속도도 향상되었다. 또한 제안된 방법은 원본 영상이 99.05%, 1단계 99.05%, 2단계 98.93%, 3단계 98.54% 정도의 인식률을 보였으며, 대량의 얼굴 데이터베이스를 구축하여 얼굴인식을 하는데 가능함을 보였다.

Assessment of Water Quality using Multivariate Statistical Techniques: A Case Study of the Nakdong River Basin, Korea

  • Park, Seongmook;Kazama, Futaba;Lee, Shunhwa
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.197-203
    • /
    • 2014
  • This study estimated spatial and seasonal variation of water quality to understand characteristics of Nakdong river basin, Korea. All together 11 parameters (discharge, water temperature, dissolved oxygen, 5-day biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, electrical conductivity, total nitrogen, total phosphorus, and total organic carbon) at 22 different sites for the period of 2003-2011 were analyzed using multivariate statistical techniques (cluster analysis, principal component analysis and factor analysis). Hierarchical cluster analysis grouped whole river basin into three zones, i.e., relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) based on similarity of water quality characteristics. The results of factor analysis/principal component analysis explained up to 83.0%, 81.7% and 82.7% of total variance in water quality data of LP, MP, and HP zones, respectively. The rotated components of PCA obtained from factor analysis indicate that the parameters responsible for water quality variations were mainly related to discharge and total pollution loads (non-point pollution source) in LP, MP and HP areas; organic and nutrient pollution in LP and HP zones; and temperature, DO and TN in LP zone. This study demonstrates the usefulness of multivariate statistical techniques for analysis and interpretation of multi-parameter, multi-location and multi-year data sets.

Improving the Subject Independent Classification of Implicit Intention By Generating Additional Training Data with PCA and ICA

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • 제14권4호
    • /
    • pp.24-29
    • /
    • 2018
  • EEG-based brain-computer interfaces has focused on explicitly expressed intentions to assist physically impaired patients. For EEG-based-computer interfaces to function effectively, it should be able to understand users' implicit information. Since it is hard to gather EEG signals of human brains, we do not have enough training data which are essential for proper classification performance of implicit intention. In this paper, we improve the subject independent classification of implicit intention through the generation of additional training data. In the first stage, we perform the PCA (principal component analysis) of training data in a bid to remove redundant components in the components within the input data. After the dimension reduction by PCA, we train ICA (independent component analysis) network whose outputs are statistically independent. We can get additional training data by adding Gaussian noises to ICA outputs and projecting them to input data domain. Through simulations with EEG data provided by CNSL, KAIST, we improve the classification performance from 65.05% to 66.69% with Gamma components. The proposed sample generation method can be applied to any machine learning problem with fewer samples.

RBF 뉴럴네트워크를 사용한 바이오매스 에너지문제의 계량적 분석 (Quantitative Analysis for Biomass Energy Problem Using a Radial Basis Function Neural Network)

  • 백승현;황승준
    • 산업경영시스템학회지
    • /
    • 제36권4호
    • /
    • pp.59-63
    • /
    • 2013
  • In biomass gasification, efficiency of energy quantification is a difficult part without finishing the process. In this article, a radial basis function neural network (RBFN) is proposed to predict biomass efficiency before gasification. RBFN will be compared with a principal component regression (PCR) and a multilayer perceptron neural network (MLPN). Due to the high dimensionality of data, principal component transform is first used in PCR and afterwards, ordinary regression is applied to selected principal components for modeling. Multilayer perceptron neural network (MLPN) is also used without any preprocessing. For this research, 3 wood samples and 3 other feedstock are used and they are near infrared (NIR) spectrum data with high-dimensionality. Ash and char are used as response variables. The comparison results of two responses will be shown.

주성분 분석을 이용한 빅데이터 분석 (Big Data Analysis Using Principal Component Analysis)

  • 이승주
    • 한국지능시스템학회논문지
    • /
    • 제25권6호
    • /
    • pp.592-599
    • /
    • 2015
  • 빅 데이터 환경에서 빅데이터를 분석하기 위한 새로운 방법의 필요성이 대두되고 있다. 데이터의 크기, 다양성, 그리고 적재 속도 등의 빅데이터 특성으로 인해 모집단의 추론에서 전체 데이터의 분석이 가능해졌기 때문이다. 그러나 전통적인 통계분석 방법은 모집단으로부터 추출된 확률표본에 초점이 맞추어져 있다. 따라서 기존의 통계적 접근방법은 빅데이터 분석에 적합하지 않은 경우가 발생한다. 이와 같은 문제점을 해결하기 위하여 본 논문에서는 빅데이터분석을 위한 새로운 접근방법에 대하여 제안하였다. 특히 대표적인 다변량 통계분석 기법인 주성분 분석을 이용하여 효율적인 빅데이터분석을 위한 방법론을 연구하였다. 제안방법의 성능평가를 위하여 통계적 모의실험을 실시하였다.

해상교통 조우데이터 요인분석에 관한 연구 (A Study on the Factor Analysis of the Encounter Data in the Maritime Traffic Environment)

  • 김광일;정중식;박계각
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.293-298
    • /
    • 2015
  • 해상교통상황에서 수집된 선박 조우(Encounter) 데이터 변수는 선박 충돌 및 근접사고(Near-Collision) 위험도를 통계적인 방법에 의한 분석이 가능하다. 본 연구에서는 선박 조우 데이터에서 추출되는 다수의 선박충돌위험도 평가 변수들을 요인분석(Factor Analysis)하여, 선박 조우데이터에서 충돌위험에 영향을 미치는 주요 요인을 결정하고자 한다. 각 요인 결정을 위해 선박조우데이터 변수 정규분포화 및 표준화를 수행한 후 주성분 분석(Principal Component Analysis)으로 요인을 결정하였다. 요인분석결과 선박 근접도 요인과 충돌회피변화요인으로 요약하였다.

Principal component analysis를 이용한 LSP 계수의 압축기법 (Compression of LSP Coefficents Using Principal Component Analysis)

  • 안해용;이철희
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.85-88
    • /
    • 2001
  • Line spectrum pair(LSP) 계수는 양자화 오류에 강하고. 선형 릴간에 효율적이며, 필터의 안정성 판정이 용이하므로 LPC를 대신하여 음성 부호화에 널리 사용되고 있다. 일반적으로 LSP 계수간에는 일정한 상관관계가 나타나고, 이 특성을 이용하면 LSP 계수의 부호량을 줄일 수 있는 가능성이 있나. 본 논문에서는 LSP 계수를 압축하기 위해 principal component analysis(PCA)를 사용한 방법을 제안한다. 제안된 방법에서는 LSP 계수를 Karhunen-Loeve(KL) 변환해 에너지가 집중되는 고유치(eigenvalue)와 고유벡터(eigenvector)를 찾고 값을 양자화 한다. 성능 평가를 위해 2.4kbps MELP(mixed excitation linear prediction)와 8kbps QCELP(qualcumn code excited linear prediction) 음성 부호화기를 사용해 결과 값을 비교했고, 압축률이 증가하는 것을 확인했다.

  • PDF