• Title/Summary/Keyword: the ${\epsilon}$ - N proof

Search Result 2, Processing Time 0.015 seconds

ON UNIVERSAL FUNCTIONS

  • Aron, Richard;Markose, Dinesh
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.65-76
    • /
    • 2004
  • An entire function $f\;{\in}\;H(\mathbb{C})$ is called universal with respect to translations if for any $g\;{\in}\;H(\mathbb{C}),\;R\;>\;0,\;and\;{\epsilon}\;>\;0$, there is $n\;{\in}\;{\mathbb{N}}$ such that $$\mid$f(z\;+\;n)\;-\;g(z)$\mid$\;<\;{\epsilon}$ whenever $$\mid$z$\mid$\;{\leq}\;R$. Similarly, it is universal with respect to differentiation if for any g, R, and $\epsilon$, there is n such that $$\mid$f^{(n)}(z)\;-\;g(z)$\mid$\;<\;{\epsilon}\;for\;$\mid$z$\mid$\;{\leq}\;R$. In this note, we review G. MacLane's proof of the existence of universal functions with respect to differentiation, and we give a simplified proof of G. D. Birkhoff's theorem showing the existence of universal functions with respect to translation. We also discuss Godefroy and Shapiro's extension of these results to convolution operators as well as some new, related results and problems.

A Case Study on Students' Concept Images of the Uniform Convergence of Sequences of Continuous Functions

  • Jeong, Moonja;Kim, Seong-A
    • Research in Mathematical Education
    • /
    • v.17 no.2
    • /
    • pp.133-152
    • /
    • 2013
  • In this research, we investigated students' understanding of the definitions of sequence of continuous functions and its uniform convergence. We selected three female and three male students out of the senior class of a university and conducted questionnaire surveys 4 times. We examined students' concept images of sequence of continuous functions and its uniform convergence and also how they approach to the right concept definitions for those through several progressive questions. Furthermore, we presented some suggestions for effective teaching-learning for the sequences of continuous functions.