• Title/Summary/Keyword: thalamus

Search Result 202, Processing Time 0.023 seconds

Tc-99m ECD Brain SPECT in MELAS Syndrome and Mitochondrial Myopathy: Comparison with MR findings (MELAS 증후군과 미토콘드리아 근육병에서의 Tc-99m ECD 뇌단일 광전자방출 전산화단층촬영 소견: 자기공명영상과의 비교)

  • Park, Sang-Joon;Ryu, Young-Hoon;Jeon, Tae-Joo;Kim, Jai-Keun;Nam, Ji-Eun;Yoon, Pyeong-Ho;Yoon, Choon-Sik;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.490-496
    • /
    • 1998
  • Purpose: We evaluated brain perfusion SPECT findings of MELAS syndrome and mitochondrial myopathy in correlation with MR imaging in search of specific imaging features. Materials and Methods: Subjects were five patients (four females and one male; age range, 1 to 25 year) who presented with repeated stroke-like episodes, seizures or developmental delay or asymptomatic but had elevated lactic acid in CSF and serum. Conventional non-contrast MR imaging and Tc-99m-ethyl cysteinate dimer (ECD) brain perfusion SPECT were Performed and imaging features were analyzed. Results: MRI demonstrated increased T2 signal intensities in the affected areas of gray and white matters mainly in the parietal (4/5) and occipital lobes (4/5) and in the basal ganglia (1/5), which were not restricted to a specific vascular territory. SPECT demonstrated decreased perfusion in the corresponding regions of MRI lesions. In addition, there were perfusion defects in parietal (1 patient), temporal (2), and frontal (1) lobes and basal ganglia (1) and thalami (2). In a patient with mitochondrial myopathy who had normal MRI, decreased perfusion was noted in left parietal area and bilateral thalami. Conclusion: Tc-99m ECD SPECT imaging in patients with MELAS syndrome and mitochondrial myopathy showed hypoperfusion of parieto-occipital cortex, basal ganglia, thalamus and temporal cortex, which were not restricted to a specific vascular territory. There were no specific imaging features on SPECT. The significance of abnormal perfusion on SPECT without corresponding MR abnormalities needs to be evaluated further in larger number of patients.

  • PDF

Different Uptake of Tc-99m ECD and Tc-99m HMPAO in the Normal Brains: Analysis by Statistical Parametric Mapping (정상 뇌 혈류 영상에서 방사성의약품에 따라 혈류 분포에 차이가 있는가: 통계적 파라미터 지도를 사용한 분석)

  • Kim, Euy-Neyng;Jung, Yong-An;Sohn, Hyung-Sun;Kim, Sung-Hoon;Yoo, Ie-Ryung;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.4
    • /
    • pp.244-254
    • /
    • 2002
  • Purpose: This study investigated the differences between technetium-99m ethyl cysteinate dimer (Tc-99m ECD) and technetium-99m hexamethylpropylene amine oxime (Tc-99m HMPAO) uptake in the normal brain by means of statistical parametric mapping (SPM) analysis. Materials and Methods: We retrospectively analyzed age and sex matched 53 cases of normal brain SPECT. Thirty-two cases were obtained with Tc-99m ECD and 21 cases with Tc-99m HMPAO. There were no abnormal findings on brain MRIs. All of the SPECT images were spatially transformed to standard space, smoothed and globally normalized. The differences between the Tc-99m ECD and Tc-99m HMPAO SPECT images were statistically analyzed using statistical parametric mapping (SPM'99) software. The differences bgetween the two groups were considered significant ant a threshold of corrected P values less than 0.05. Results: SPM analysis revealed significantly different uptakes of Tc-99m ECD and Tc-99m HMPAO in the normal brains. On the Tc-99m ECD SPECT images, relatively higher uptake was observed in the frontal, parietal and occipital lobes, in the basal ganglia and thalamus, and in the superior region of the cerebellum. On the Tc-99m HMPAO SPECT images, relatively higher uptakes was observed in subcortical areas of the frontal region, temporal lobe, and posterior portion of inferior cerebellum. Conclusion: Uptake of Tc-99m ECD and Tc-99m HMPO in the normallooking brain was significantly different on SPM analysis. The selective use of Tc-99m ECD of Tc-99m HMPAO in brain SPECT imaging appears especially valuable for the interpretation of cerebral perfusion. Further investigation is necessary to determine which tracer is more accurate for diagnosing different clinical conditions.