• Title/Summary/Keyword: texturized vegetable protein

Search Result 3, Processing Time 0.014 seconds

Effects of storage temperature on quality characteristics of texturized vegetable protein

  • Seul Lee;Sun Young Jung;Mi Sook Seo;Chan Soon Park
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.46-63
    • /
    • 2024
  • This study evaluated the impact of storage temperature on the quality characteristics of texturized vegetable protein (TVP). TVP was prepared by mixing defatted Daewon soybean flour at 80℃, gluten, and corn starch in a 5:3:2 ratio, which was then extruded at a screw speed of 250 rpm and a barrel temperature of 190℃ with moisture addition at 9 rpm. Subsequently, the extruded TVP was vacuum-sealed in polyethylene packaging and stored at -20℃, 0℃, and 4℃ for 9 days. Texture analysis revealed that the curing rate followed 4℃ > 0℃ > -20℃ sequence. No significant color variation was observed across the storage conditions, although water content increased at all temperatures. Notable changes were detected in moisture absorption capacity (%) and solid leaching (%), following the order of -20℃ > 0℃ > 4℃. The turbidity of the solution released during cooking varied, with the highest to the lowest sequence being -20℃ > 4℃ > 0℃, while pH levels remained neutral. Regarding free amino acids, sweetness and textural quality improved with storage across all temperatures, whereas bitterness components diminished at 4℃. The study suggests that refrigerated storage at 4℃ is a viable method for distributing TVP, which was previously distributed only in a frozen and dry state.

Effects of soy defatting on texturization of texturized vegetable proteins (대두 탈지 처리가 식물조직단백 조직화 특성에 미치는 영향)

  • Chan Soon Park;Mi Sook Seo;Sun Young Jung;Boram Park;Shin Young Park
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.875-884
    • /
    • 2023
  • In this study, the quality characteristics of texturized vegetable proteins (TVP) produced from defatted soy flour (DSF) were analytically compared with those of texturized vegetable proteins produced with isolated soy protein (ISP) and non-defatted soy flour (SF). The base raw material formulation consisted of 50% soy proteins, 30% gluten, and 20% corn starch. A cooling die-equipped extruder was used with a barrel temperature set at 190℃ and screw rotation speed of 250 rpm. With respect to the hardness of isolate soy proteins, that of soy flour and defatted soy flour was 22.4% and 68.8%, respectively, and gumminess was 17.6% and 44.3%, respectively. Defatting increased chewiness, shear strength, and springiness. Moisture content was higher in soy flour than in defatted soy flour, while there were no significant differences in terms of water absorption and turbidity. The pH was higher with soy flour than with defatted soy flour. Concerning color, the L and b values were higher with soy flour, while the a value was higher with defatted soy flour. These results suggest that defatting soybeans can improve the quality of plant-based proteins. Further research is needed to address the quality differences from those of isolated soy proteins.

Quality properties of texturized vegetable protein made from defatted soybean flour with different soybean seed coat contents (대두껍질 함량에 따른 탈지대두분말 식물조직단백의 품질 특성)

  • Chan Soon Park;Mi Sook Seo;Sun Young Jung;Seul Lee;Boram Park;Shin Young Park;Yong Suk Kim
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.896-904
    • /
    • 2023
  • The texturization characteristics of textured vegetable protein (TVP) were investigated based on the extent of soybean decoating during the pretreatment of defatted soybean flour used for TVP. The raw materials for TVP consisted of 50% defatted soybean flour, 30% gluten, and 20% corn starch. The weight ratios of soybean seed coat to soybean flour were 9%, 6%, 3%, and zero. Extrusion was performed using an extruder equipped with a cooling die, maintaining a barrel temperature of 190℃ and screw speed of 250 rpm, Water was injected at a rate of 9 rpm using a metering pump. Regarding the textures of the extruded TVPs produced from defatted soybean flour, an increase in the soybean seed coat content led to a decrease in the apparent fibrous structural layer and an increase in hardness. However, there were no significant changes in elasticity and cohesion. Moreover, as the soybean seed coat content increased, the pH of TVPs decreased. A higher soybean seed coat content also tended to lower the moisture content, increasing water absorption, solids elution, and turbidity. These results suggest that an increased seed coat content reduces the proportion of protein, and the fibers present in the seed coats prevent texturization.