• Title/Summary/Keyword: texture images

Search Result 759, Processing Time 0.025 seconds

Color Image Coding Based on Shape-Adaptive All Phase Biorthogonal Transform

  • Wang, Xiaoyan;Wang, Chengyou;Zhou, Xiao;Yang, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.114-127
    • /
    • 2017
  • This paper proposes a color image coding algorithm based on shape-adaptive all phase biorthogonal transform (SA-APBT). This algorithm is implemented through four procedures: color space conversion, image segmentation, shape coding, and texture coding. Region-of-interest (ROI) and background area are obtained by image segmentation. Shape coding uses chain code. The texture coding of the ROI is prior to the background area. SA-APBT and uniform quantization are adopted in texture coding. Compared with the color image coding algorithm based on shape-adaptive discrete cosine transform (SA-DCT) at the same bit rates, experimental results on test color images reveal that the objective quality and subjective effects of the reconstructed images using the proposed algorithm are better, especially at low bit rates. Moreover, the complexity of the proposed algorithm is reduced because of uniform quantization.

Texture Analysis for Classifying Normal Tissue, Benign and Malignant Tumors from Breast Ultrasound Image

  • Eom, Sang-Hee;Ye, Soo-Young
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2022
  • Breast ultrasonic reading is critical as a primary screening test for the early diagnosis of breast cancer. However, breast ultrasound examinations show significant differences in diagnosis based on the difference in image quality according to the ultrasonic equipment, experience, and proficiency of the examiner. Accordingly, studies are being actively conducted to analyze the texture characteristics of normal breast tissue, positive tumors, and malignant tumors using breast ultrasonography and to use them for computer-assisted diagnosis. In this study, breast ultrasonography was conducted to select 247 ultrasound images of 71 normal breast tissues, 87 fibroadenomas among benign tumors, and 89 malignant tumors. The selected images were calculated using a statistical method with 21 feature parameters extracted using the gray level co-occurrence matrix algorithm, and classified as normal breast tissue, benign tumor, and malignancy. In addition, we proposed five feature parameters that are available for computer-aided diagnosis of breast cancer classification. The average classification rate for normal breast tissue, benign tumors, and malignant tumors, using this feature parameter, was 82.8%.

GAN-Based Local Lightness-Aware Enhancement Network for Underexposed Images

  • Chen, Yong;Huang, Meiyong;Liu, Huanlin;Zhang, Jinliang;Shao, Kaixin
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.575-586
    • /
    • 2022
  • Uneven light in real-world causes visual degradation for underexposed regions. For these regions, insufficient consideration during enhancement procedure will result in over-/under-exposure, loss of details and color distortion. Confronting such challenges, an unsupervised low-light image enhancement network is proposed in this paper based on the guidance of the unpaired low-/normal-light images. The key components in our network include super-resolution module (SRM), a GAN-based low-light image enhancement network (LLIEN), and denoising-scaling module (DSM). The SRM improves the resolution of the low-light input images before illumination enhancement. Such design philosophy improves the effectiveness of texture details preservation by operating in high-resolution space. Subsequently, local lightness attention module in LLIEN effectively distinguishes unevenly illuminated areas and puts emphasis on low-light areas, ensuring the spatial consistency of illumination for locally underexposed images. Then, multiple discriminators, i.e., global discriminator, local region discriminator, and color discriminator performs assessment from different perspectives to avoid over-/under-exposure and color distortion, which guides the network to generate images that in line with human aesthetic perception. Finally, the DSM performs noise removal and obtains high-quality enhanced images. Both qualitative and quantitative experiments demonstrate that our approach achieves favorable results, which indicates its superior capacity on illumination and texture details restoration.

Texture Feature Analysis Using a Brain Hemorrhage Patient CT Images (전산화단층촬영 영상을 이용한 뇌출혈 질감특징분석)

  • Park, Hyonghu;Park, Jikoon;Choi, Ilhong;Kang, Sangsik;Noh, Sicheol;Jung, Bongjae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.369-374
    • /
    • 2015
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some brain hemorrhage patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of brain hemorrhage. As the results of examining over 40 example CT images of brain hemorrhage, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including average gray level, average contrast, smoothness, and Skewness while others showed a little low disease recognition rate: 95% for uniformity and 87.5% for entropy. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of brain hemorrhage and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

Extraction of an Effective Saliency Map for Stereoscopic Images using Texture Information and Color Contrast (색상 대비와 텍스처 정보를 이용한 효과적인 스테레오 영상 중요도 맵 추출)

  • Kim, Seong-Hyun;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1008-1018
    • /
    • 2015
  • In this paper, we propose a method that constructs a saliency map in which important regions are accurately specified and the colors of the regions are less influenced by the similar surrounding colors. Our method utilizes LBP(Local Binary Pattern) histogram information to compare and analyze texture information of surrounding regions in order to reduce the effect of color information. We extract the saliency of stereoscopic images by integrating a 2D saliency map with depth information of stereoscopic images. We then measure the distance between two different sizes of the LBP histograms that are generated from pixels. The distance we measure is texture difference between the surrounding regions. We then assign a saliency value according to the distance in LBP histogram. To evaluate our experimental results, we measure the F-measure compared to ground-truth by thresholding a saliency map at 0.8. The average F-Measure is 0.65 and our experimental results show improved performance in comparison with existing other saliency map extraction methods.

Classification of Livestock Diseases Using GLCM and Artificial Neural Networks

  • Choi, Dong-Oun;Huan, Meng;Kang, Yun-Jeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.173-180
    • /
    • 2022
  • In the naked eye observation, the health of livestock can be controlled by the range of activity, temperature, pulse, cough, snot, eye excrement, ears and feces. In order to confirm the health of livestock, this paper uses calf face image data to classify the health status by image shape, color and texture. A series of images that have been processed in advance and can judge the health status of calves were used in the study, including 177 images of normal calves and 130 images of abnormal calves. We used GLCM calculation and Convolutional Neural Networks to extract 6 texture attributes of GLCM from the dataset containing the health status of calves by detecting the image of calves and learning the composite image of Convolutional Neural Networks. In the research, the classification ability of GLCM-CNN shows a classification rate of 91.3%, and the subsequent research will be further applied to the texture attributes of GLCM. It is hoped that this study can help us master the health status of livestock that cannot be observed by the naked eye.

An Algorithm of MIP-Map Level Selection for Ray-Traced Texture Mapping (광선 추적법 텍스쳐 매핑을 위한 MIP-Map 수준 선택 알고리즘 연구)

  • Park, Woo-Chan;Kim, Dong-Seok
    • Journal of Korea Game Society
    • /
    • v.10 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • This paper proposes an effective method to select MIP-Map level of texture images for ray-traced texture mapping. This MIP-Map level selection method requires only the total length of intersected ray. By supporting MIP-Map for texture mapping, we can reduce the texture aliasing effects, while our approach decreases rendering performance very slightly.

A Study on the Human Sensibility Measurement Technology of Texture Coordination (Texture Coordination의 감성공학적 연구)

  • 김미지자
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.3 no.1
    • /
    • pp.47-55
    • /
    • 2001
  • The Human Sensibility Measurement Technology, the engineering discipline that translate the imagination and good impression of human being into a physical factor for relevant product, is important to improve the quality of industrial products. This dissertation is aimed at measuring and evaluating the human sensibility for texture I presented the image scale in expectation of applying it to the production and choice of goods fitting into one's sensibility and to the coordination of goods which have similar images.

  • PDF

MPEG-7 Homogeneous Texture Descriptor

  • Ro, Yong-Man;Kim, Mun-Churl;Kang, Ho-Kyung;Manjunath, B.S.;Kim, Jin-Woong
    • ETRI Journal
    • /
    • v.23 no.2
    • /
    • pp.41-51
    • /
    • 2001
  • MPEG-7 standardization work has started with the aims of providing fundamental tools for describing multimedia contents. MPEG-7 defines the syntax and semantics of descriptors and description schemes so that they may be used as fundamental tools for multimedia content description. In this paper, we introduce a texture based image description and retrieval method, which is adopted as the homogeneous texture descriptor in the visual part of the MPEG-7 final committee draft. The current MPEG-7 homogeneous texture descriptor consists of the mean, the standard deviation value of an image, energy, and energy deviation values of Fourier transform of the image. These are extracted from partitioned frequency channels based on the human visual system (HVS). For reliable extraction of the texture descriptor, Radon transformation is employed. This is suitable for HVS behavior. We also introduce various matching methods; for example, intensity-invariant, rotation-invariant and/or scale-invariant matching. This technique retrieves relevant texture images when the user gives a querying texture image. In order to show the promising performance of the texture descriptor, we take the experimental results with the MPEG-7 test sets. Experimental results show that the MPEG-7 texture descriptor gives an efficient and effective retrieval rate. Furthermore, it gives fast feature extraction time for constructing the texture descriptor.

  • PDF

Automated texture mapping for 3D modeling of objects with complex shapes --- a case study of archaeological ruins

  • Fujiwara, Hidetomo;Nakagawa, Masafumi;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1177-1179
    • /
    • 2003
  • Recently, the ground-based laser profiler is used for acquisition of 3D spatial information of a rchaeological objects. However, it is very difficult to measure complicated objects, because of a relatively low-resolution. On the other hand, texture mapping can be a solution to complement the low resolution, and to generate 3D model with higher fidelity. But, a huge cost is required for the construction of textured 3D model, because huge labor is demanded, and the work depends on editor's experiences and skills . Moreover, the accuracy of data would be lost during the editing works. In this research, using the laser profiler and a non-calibrated digital camera, a method is proposed for the automatic generation of 3D model by integrating these data. At first, region segmentation is applied to laser range data to extract geometric features of an object in the laser range data. Various information such as normal vectors of planes, distances from a sensor and a sun-direction are used in this processing. Next, an image segmentation is also applied to the digital camera images, which include the same object. Then, geometrical relations are determined by corresponding the features extracted in the laser range data and digital camera’ images. By projecting digital camera image onto the surface data reconstructed from laser range image, the 3D texture model was generated automatically.

  • PDF