• 제목/요약/키워드: texture feature

검색결과 437건 처리시간 0.03초

피부 현미경 영상을 통한 피부 특징 추출 및 피부 나이 도출 기법 (A scheme of extracting age-related wrinkle feature and skin age based on dermoscopic images)

  • 최영환;황인준
    • 전기전자학회논문지
    • /
    • 제14권4호
    • /
    • pp.332-338
    • /
    • 2010
  • 영상 처리를 통한 특징 추출은 영상 검색, 객체 인식, 영상 인덱싱을 포함하는 다양한 분야에서 전처리 과정으로 사용되어 왔다. 특히, 영상 질감 분석에서는 질감 특성 추출을 더 용이하게 하기 위해 질감의 대비를 증가시키는 방법을 사용한다. 생체 현미경 영상에서 두드러진 질감중의 하나는 주름이며 주름의 특징은 노화 관련 응용에 유용한 정보를 다양하게 제공한다. 본 논문에서는 피부 영상에서 나이 관련 특징을 추출하는 기존 방법을 개선하여 피부 나이 측정의 정확도를 높이는 방법을 제안한다.

Face Recognition Based on the Combination of Enhanced Local Texture Feature and DBN under Complex Illumination Conditions

  • Li, Chen;Zhao, Shuai;Xiao, Ke;Wang, Yanjie
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.191-204
    • /
    • 2018
  • To combat the adverse impact imposed by illumination variation in the face recognition process, an effective and feasible algorithm is proposed in this paper. Firstly, an enhanced local texture feature is presented by applying the central symmetric encode principle on the fused component images acquired from the wavelet decomposition. Then the proposed local texture features are combined with Deep Belief Network (DBN) to gain robust deep features of face images under severe illumination conditions. Abundant experiments with different test schemes are conducted on both CMU-PIE and Extended Yale-B databases which contain face images under various illumination condition. Compared with the DBN, LBP combined with DBN and CSLBP combined with DBN, our proposed method achieves the most satisfying recognition rate regardless of the database used, the test scheme adopted or the illumination condition encountered, especially for the face recognition under severe illumination variation.

Face Representation and Face Recognition using Optimized Local Ternary Patterns (OLTP)

  • Raja, G. Madasamy;Sadasivam, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.402-410
    • /
    • 2017
  • For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.

유방 종양 세포 조직 영상의 분류 (Classification of Breast Tumor Cell Tissue Section Images)

  • 황해길;최현주;윤혜경;남상희;최흥국
    • 융합신호처리학회논문지
    • /
    • 제2권4호
    • /
    • pp.22-30
    • /
    • 2001
  • 본 논문은 유방질환 중에서 유관(duct )에 발생하는 유방종양을 Benign, DCIS(ductal carcinoma in situ) NOS (invasive ductal carcinoma)로 분류하기 위해 3가지 분류기 (classifier) 를 생성한 후, 비교 분석하였다. 분류기 생성에서 가장 중요한 단계인 특징 추출 단계에서 세포핵의 기하학적 특징을 형태학적 특징을 추출하여 분류기를 생성하고 염색질 패턴의 내부적 변화를 나타내는 질감 특징을 추출하여 2가지 배율(100/400배)에서 2개의 분류기를 생성하였다. 400배 배율의 유방질환 영상에서 세포핵을 추출하여 핵의 형태학적 특징값인 핵의 면적, 둘레. 가로, 세로(장. 단축) 의 길이, 원형성의 비율을 구한 후 이 특징값들을 조합하여 판별분석에 의해 분류기를 생생하고, 분류 정확도를 검증하였다. 100배 배율과 400배의 배율의 유방질환 영상에서 1, 2, 3, 4 단계(level)의 wavelet 변환를 적용한 후, 분할된 서브밴드에서 GLCM(Gray Level Co-occurrence Matrix)을 이용하여 질감 특징(entropy Energy, Contrast, Homogeneity)를 추출하고, 이 특징값들을 조합하여 판변 분석에 의해 분류기를 생성한 후 분류 정확도를 검증하였다. 이 세 분류기를 비교 분석 하였을때 현민경 100배 배율의 영상을 3단계 wavelet 변환을 적용하고 질감 특징을 추출하여 생성한 분류기가 다른 두 분류기보다 유방 질환 Benign, DCIS; NOS를 분류하는데 더 나은 결과를 보였다.

  • PDF

질감 기반 이미지 검색을 위한 질감 서술자 및 컴퓨터 조력 진단 시스템의 적용 (Texture Descriptor for Texture-Based Image Retrieval and Its Application in Computer-Aided Diagnosis System)

  • 뮤잠멜;팽소호;김덕환
    • 전자공학회논문지CI
    • /
    • 제47권4호
    • /
    • pp.34-43
    • /
    • 2010
  • 질감 정보는 객체 인식과 분류에서 중요한 역할을 하고 있다. 정확한 질환 판별을 위해 분류에서 사용되는 질감 특징은 식별성이 높아야 한다. 본 논문에서는 질감-기반 영상 검색 및 폐기종 진단을 위해 컴퓨터 조력진단(Computer-Aided Diagnosis) 시스템을 위한 새로운 질감 기술자를 제안한다. 제안한 질감 기술자는 이웃화소간의 차이값과 중심화소와 이웃화소간의 차이 값의 결합에 기반을 두고 있어 결합된 주변화소 차이(Combined Neighborhood Difference; CND)라고 한다. 화소들간의 CND는 비교후 이진 코드워드로 변환된다. 그다음에, 식별성이 높은 값을 생성하기 위하여 이진 계수가 코드워드에 할당된다. 이와 같은 값들의 분포가 계산되어 질감 특징 벡터를 구성한다. Outex와 Brodatz 데이터집합을 이용한 질감 특징 분류에 관련하여 CND는 92.5%의 정확성을 보이는 데 비해, LBP, LND와 Gabor 픽터는 89.3%, 90.7%와 83.6%의 정확성을 각각 보여준다. 본 논문에서는 CND를 이용한 폐기종의 진단 기능을 CAD 시스템에서 구현하였다.

색상과 texture 특징을 이용한 내용 기반 영상 정보 검색 시스템 (Content-Based Image Retrival System Using Color and Texture Feature)

  • 정미영;이원호;정미영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.506-508
    • /
    • 1998
  • 본 논문에서는 경치 영상들에 대해 영상의 내용(색상, texture)에 기반하여 검색하는새로운 방법을 제안한다. 경치 영상들은 색상이 주 특징이며 결합되는 texture 특징들에 의해 영상 정보간의 유사성의 파악이 더 용이하다. 색상 특징은 HSV 색상 히스토그램에 의해 특징을 나타내며 영상의 전역적 색상 특징과 지역적 색상 특징으로 세분화되고 texture 특징은 2차원 Garbor filter에 의해 영상별 특징을 나타낸다. 시스템의 검색은 예제 영상에 의한 질의 방식으로 예제 영상을 주면 이와 유사한 영상들이 유사도가 높은 순위대로 출력하게 된다.

  • PDF

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

A Study of Evaluation of the Feature from Cooccurrence Matrix and Appropriate Applicable Resolution

  • Seo, Byoung-Jun;Kwon, Oh-Hyoung;Kim, Yong-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.8-12
    • /
    • 1999
  • Since the advent of high resolution satellite image, possibilities of applying various human interpretation mechanism to these images have increased. Also many studies about these possibilities in many fields such as computer vision, pattern recognition, artificial intellegence and remote sensing have been done. In this field of these studies, texture is defined as a kind of quantity related to spatial distribution of brightness and tone and also plays an important role for interpretation of images. Especially, methods of obtaining texture by statistical model have been studied intensively. Among these methods, texture measurement method based on cooccurrence matrix is highly estimated because it is easy to calculate texture features compared with other methods. In addition, these results in high classification accuracy when this is applied to satellite images and aerial photos. But in the existing studies using cooccurrence matrix, features have been chosen arbitrarily without considering feature variation. And not enough studies have been implemented for appropriate resolution selection in which cooccurrence matrix can extract texture. Therefore, this study reviews the concept of cooccurrence matrix as a texture measurement method, evaluates usefulness of several features obtained from cooccurrence matrix, and proposes appropriate resolution by investigating variance trend of several features.

  • PDF

자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출 (Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter)

  • 이우범;김욱현
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.311-320
    • /
    • 2003
  • 고유의 텍스쳐 성분에만 최적 반응을 하는 최적 필터(optimal filter)는 다중 텍스쳐 영상으로부터 원하는 텍스쳐 성분을 추출하기 위한 가장 뛰어난 기술이다. 그러나 기존의 최적필터 설계 방법들은 영상에 내재된 텍스쳐 정보가 사전에 주어지는 교사적 방법이 대부분이며, 내재된 텍스쳐 인식을 기반으로 하는 완전 비교사적인 방법에 관한 연구는 거의 이루어지고 있지 않은 실정이다. 따라서 본 논문에서는 효율적인 텍스쳐 분석을 위한 비교사 학습 방법과 가버필터의 주파수 대역 통과형 특징을 이용한 새로운 최적 필터 설계 방법을 제안한다. 제안한 방법은 자기조직형 신경회로망에 의해서 영상에 내재된 텍스쳐 영역을 블록 단위로 군화(clustering)하며, 가버필터의 최적 주파수는 인식된 텍스쳐 오브젝트(texture objects)의 공간 주파수를 분석한 최적 주파수에 동조(turning)한다. 그리고 설계된 최적 가버필터의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 내재된 텍스쳐 오브젝트를 추출함으로써 성공적인 결과를 보인다.

특징, 색상 및 텍스처 정보의 가공을 이용한 Bag of Visual Words 이미지 자동 분류 (Improved Bag of Visual Words Image Classification Using the Process of Feature, Color and Texture Information)

  • 박찬혁;권혁신;강석훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.79-82
    • /
    • 2015
  • 이미지를 분류하고 검색하는 기술(Image retrieval)중 하나인 Bag of visual words(BoVW)는 특징점(feature point)을 이용하는 방법으로 데이터베이스의 이미지 특징벡터들의 분포를 통해 쿼리 이미지를 자동으로 분류하고 검색해주는 시스템이다. Words를 구성하는데 특징벡터만을 이용하는 기존의 방법은 이용자가 원하지 않는 이미지를 검색하거나 분류할 수 있다. 이러한 단점을 해결하기 위해 특징벡터뿐만 아니라 이미지의 전체적인 분위기를 표현할 수 있는 색상정보나 반복되는 패턴 정보를 표현할 수 있는 텍스처 정보를 Words를 구성하는데 포함시킴으로서 다양한 검색을 가능하게 한다. 실험 부분에서는 특징정보만을 가진 words를 이용해 이미지를 분류한 결과와 색상정보와 텍스처 정보가 추가된 words를 가지고 이미지를 분류한 결과를 비교하였고 새로운 방법은 80~90%의 정확도를 나타내었다.

  • PDF