영상 처리를 통한 특징 추출은 영상 검색, 객체 인식, 영상 인덱싱을 포함하는 다양한 분야에서 전처리 과정으로 사용되어 왔다. 특히, 영상 질감 분석에서는 질감 특성 추출을 더 용이하게 하기 위해 질감의 대비를 증가시키는 방법을 사용한다. 생체 현미경 영상에서 두드러진 질감중의 하나는 주름이며 주름의 특징은 노화 관련 응용에 유용한 정보를 다양하게 제공한다. 본 논문에서는 피부 영상에서 나이 관련 특징을 추출하는 기존 방법을 개선하여 피부 나이 측정의 정확도를 높이는 방법을 제안한다.
To combat the adverse impact imposed by illumination variation in the face recognition process, an effective and feasible algorithm is proposed in this paper. Firstly, an enhanced local texture feature is presented by applying the central symmetric encode principle on the fused component images acquired from the wavelet decomposition. Then the proposed local texture features are combined with Deep Belief Network (DBN) to gain robust deep features of face images under severe illumination conditions. Abundant experiments with different test schemes are conducted on both CMU-PIE and Extended Yale-B databases which contain face images under various illumination condition. Compared with the DBN, LBP combined with DBN and CSLBP combined with DBN, our proposed method achieves the most satisfying recognition rate regardless of the database used, the test scheme adopted or the illumination condition encountered, especially for the face recognition under severe illumination variation.
For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.
본 논문은 유방질환 중에서 유관(duct )에 발생하는 유방종양을 Benign, DCIS(ductal carcinoma in situ) NOS (invasive ductal carcinoma)로 분류하기 위해 3가지 분류기 (classifier) 를 생성한 후, 비교 분석하였다. 분류기 생성에서 가장 중요한 단계인 특징 추출 단계에서 세포핵의 기하학적 특징을 형태학적 특징을 추출하여 분류기를 생성하고 염색질 패턴의 내부적 변화를 나타내는 질감 특징을 추출하여 2가지 배율(100/400배)에서 2개의 분류기를 생성하였다. 400배 배율의 유방질환 영상에서 세포핵을 추출하여 핵의 형태학적 특징값인 핵의 면적, 둘레. 가로, 세로(장. 단축) 의 길이, 원형성의 비율을 구한 후 이 특징값들을 조합하여 판별분석에 의해 분류기를 생생하고, 분류 정확도를 검증하였다. 100배 배율과 400배의 배율의 유방질환 영상에서 1, 2, 3, 4 단계(level)의 wavelet 변환를 적용한 후, 분할된 서브밴드에서 GLCM(Gray Level Co-occurrence Matrix)을 이용하여 질감 특징(entropy Energy, Contrast, Homogeneity)를 추출하고, 이 특징값들을 조합하여 판변 분석에 의해 분류기를 생성한 후 분류 정확도를 검증하였다. 이 세 분류기를 비교 분석 하였을때 현민경 100배 배율의 영상을 3단계 wavelet 변환을 적용하고 질감 특징을 추출하여 생성한 분류기가 다른 두 분류기보다 유방 질환 Benign, DCIS; NOS를 분류하는데 더 나은 결과를 보였다.
질감 정보는 객체 인식과 분류에서 중요한 역할을 하고 있다. 정확한 질환 판별을 위해 분류에서 사용되는 질감 특징은 식별성이 높아야 한다. 본 논문에서는 질감-기반 영상 검색 및 폐기종 진단을 위해 컴퓨터 조력진단(Computer-Aided Diagnosis) 시스템을 위한 새로운 질감 기술자를 제안한다. 제안한 질감 기술자는 이웃화소간의 차이값과 중심화소와 이웃화소간의 차이 값의 결합에 기반을 두고 있어 결합된 주변화소 차이(Combined Neighborhood Difference; CND)라고 한다. 화소들간의 CND는 비교후 이진 코드워드로 변환된다. 그다음에, 식별성이 높은 값을 생성하기 위하여 이진 계수가 코드워드에 할당된다. 이와 같은 값들의 분포가 계산되어 질감 특징 벡터를 구성한다. Outex와 Brodatz 데이터집합을 이용한 질감 특징 분류에 관련하여 CND는 92.5%의 정확성을 보이는 데 비해, LBP, LND와 Gabor 픽터는 89.3%, 90.7%와 83.6%의 정확성을 각각 보여준다. 본 논문에서는 CND를 이용한 폐기종의 진단 기능을 CAD 시스템에서 구현하였다.
본 논문에서는 경치 영상들에 대해 영상의 내용(색상, texture)에 기반하여 검색하는새로운 방법을 제안한다. 경치 영상들은 색상이 주 특징이며 결합되는 texture 특징들에 의해 영상 정보간의 유사성의 파악이 더 용이하다. 색상 특징은 HSV 색상 히스토그램에 의해 특징을 나타내며 영상의 전역적 색상 특징과 지역적 색상 특징으로 세분화되고 texture 특징은 2차원 Garbor filter에 의해 영상별 특징을 나타낸다. 시스템의 검색은 예제 영상에 의한 질의 방식으로 예제 영상을 주면 이와 유사한 영상들이 유사도가 높은 순위대로 출력하게 된다.
Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2004년도 ICCAS
/
pp.2059-2064
/
2004
Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.
대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
/
pp.8-12
/
1999
Since the advent of high resolution satellite image, possibilities of applying various human interpretation mechanism to these images have increased. Also many studies about these possibilities in many fields such as computer vision, pattern recognition, artificial intellegence and remote sensing have been done. In this field of these studies, texture is defined as a kind of quantity related to spatial distribution of brightness and tone and also plays an important role for interpretation of images. Especially, methods of obtaining texture by statistical model have been studied intensively. Among these methods, texture measurement method based on cooccurrence matrix is highly estimated because it is easy to calculate texture features compared with other methods. In addition, these results in high classification accuracy when this is applied to satellite images and aerial photos. But in the existing studies using cooccurrence matrix, features have been chosen arbitrarily without considering feature variation. And not enough studies have been implemented for appropriate resolution selection in which cooccurrence matrix can extract texture. Therefore, this study reviews the concept of cooccurrence matrix as a texture measurement method, evaluates usefulness of several features obtained from cooccurrence matrix, and proposes appropriate resolution by investigating variance trend of several features.
고유의 텍스쳐 성분에만 최적 반응을 하는 최적 필터(optimal filter)는 다중 텍스쳐 영상으로부터 원하는 텍스쳐 성분을 추출하기 위한 가장 뛰어난 기술이다. 그러나 기존의 최적필터 설계 방법들은 영상에 내재된 텍스쳐 정보가 사전에 주어지는 교사적 방법이 대부분이며, 내재된 텍스쳐 인식을 기반으로 하는 완전 비교사적인 방법에 관한 연구는 거의 이루어지고 있지 않은 실정이다. 따라서 본 논문에서는 효율적인 텍스쳐 분석을 위한 비교사 학습 방법과 가버필터의 주파수 대역 통과형 특징을 이용한 새로운 최적 필터 설계 방법을 제안한다. 제안한 방법은 자기조직형 신경회로망에 의해서 영상에 내재된 텍스쳐 영역을 블록 단위로 군화(clustering)하며, 가버필터의 최적 주파수는 인식된 텍스쳐 오브젝트(texture objects)의 공간 주파수를 분석한 최적 주파수에 동조(turning)한다. 그리고 설계된 최적 가버필터의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 내재된 텍스쳐 오브젝트를 추출함으로써 성공적인 결과를 보인다.
이미지를 분류하고 검색하는 기술(Image retrieval)중 하나인 Bag of visual words(BoVW)는 특징점(feature point)을 이용하는 방법으로 데이터베이스의 이미지 특징벡터들의 분포를 통해 쿼리 이미지를 자동으로 분류하고 검색해주는 시스템이다. Words를 구성하는데 특징벡터만을 이용하는 기존의 방법은 이용자가 원하지 않는 이미지를 검색하거나 분류할 수 있다. 이러한 단점을 해결하기 위해 특징벡터뿐만 아니라 이미지의 전체적인 분위기를 표현할 수 있는 색상정보나 반복되는 패턴 정보를 표현할 수 있는 텍스처 정보를 Words를 구성하는데 포함시킴으로서 다양한 검색을 가능하게 한다. 실험 부분에서는 특징정보만을 가진 words를 이용해 이미지를 분류한 결과와 색상정보와 텍스처 정보가 추가된 words를 가지고 이미지를 분류한 결과를 비교하였고 새로운 방법은 80~90%의 정확도를 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.