• Title/Summary/Keyword: texture extraction

Search Result 267, Processing Time 0.022 seconds

High-resolution 3D Object Reconstruction using Multiple Cameras (다수의 카메라를 활용한 고해상도 3차원 객체 복원 시스템)

  • Hwang, Sung Soo;Yoo, Jisung;Kim, Hee-Dong;Kim, Sujung;Paeng, Kyunghyun;Kim, Seong Dae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.150-161
    • /
    • 2013
  • This paper presents a new system which produces high resolution 3D contents by capturing multiview images of an object using multiple cameras, and estimating geometric and texture information of the object from the captured images. Even though a variety of multiview image-based 3D reconstruction systems have been proposed, it was difficult to generate high resolution 3D contents because multiview image-based 3D reconstruction requires a large amount of memory and computation. In order to reduce computational complexity and memory size for 3D reconstruction, the proposed system predetermines the regions in input images where an object can exist to extract object boundaries fast. And for fast computation of a visual hull, the system represents silhouettes and 3D-2D projection/back-projection relations by chain codes and 1D homographies, respectively. The geometric data of the reconstructed object is compactly represented by a 3D segment-based data format which is called DoCube, and the 3D object is finally reconstructed after 3D mesh generation and texture mapping are performed. Experimental results show that the proposed system produces 3D object contents of $800{\times}800{\times}800$ resolution with a rate of 2.2 seconds per frame.

Infrared Target Recognition using Heterogeneous Features with Multi-kernel Transfer Learning

  • Wang, Xin;Zhang, Xin;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3762-3781
    • /
    • 2020
  • Infrared pedestrian target recognition is a vital problem of significant interest in computer vision. In this work, a novel infrared pedestrian target recognition method that uses heterogeneous features with multi-kernel transfer learning is proposed. Firstly, to exploit the characteristics of infrared pedestrian targets fully, a novel multi-scale monogenic filtering-based completed local binary pattern descriptor, referred to as MSMF-CLBP, is designed to extract the texture information, and then an improved histogram of oriented gradient-fisher vector descriptor, referred to as HOG-FV, is proposed to extract the shape information. Second, to enrich the semantic content of feature expression, these two heterogeneous features are integrated to get more complete representation for infrared pedestrian targets. Third, to overcome the defects, such as poor generalization, scarcity of tagged infrared samples, distributional and semantic deviations between the training and testing samples, of the state-of-the-art classifiers, an effective multi-kernel transfer learning classifier called MK-TrAdaBoost is designed. Experimental results show that the proposed method outperforms many state-of-the-art recognition approaches for infrared pedestrian targets.

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

A Study on the Extraction of E-mail Region in Unconstraint Calling Card Images (무제약 명함 영상에서의 E-mail 영역 검출에 관한 연구)

  • 신상철;정재영
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.5
    • /
    • pp.183-189
    • /
    • 2002
  • In this paper, we propose an algorithm to extract the E-mail address in calling card images. Firstly, text regions are separated from background. in the image. To do this, the properties of e-mail addresses and the texture features in the image is used. And then, each text region is explored to find the candidates of e-mail region. Finally, each candidate is divided into characters to find at-symbol(@), that is, e-mail region. The experimental results show hit-ratio over 93.3% for the various kind of calling cards containing different fonts, background images, caricatures.

  • PDF

Generation of 3D Campus Models using Multi-Sensor Data (다중센서데이터를 이용한 캠퍼스 3차원 모델의 구축)

  • Choi Kyoung-Ah;Kang Moon-Kwon;Shin Hyo-Sung;Lee Im-Pyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.205-210
    • /
    • 2006
  • With the development of recent technology such as telematics, LBS, and ubiquitous, the applications of 3D GIS are rapidly increased. As 3D GIS is mainly based on urban models consisting of the realistic digital models of the objects existing in an urban area, demands for urban models and its continuous update is expected to be drastically increased. The purpose of this study is thus to propose more efficient and precise methods to construct urban models with its experimental verification. Applying the proposed methods, the terrain and sophisticated building models are constructed for the area of $270,600m^2$ with 23 buildings in the University of Seoul. For the terrain models, airborne imagery and LIDAR data is used, while the ground imagery is mainly used for the building models. It is found that the generated models reflect the correct geometry of the buildings and terrain surface. The textures of building surfaces, generated automatically using the projective transformation however, are not well-constructed because of being blotted out and shaded by objects such as trees, near buildings, and other obstacles. Consequently, the algorithms on the texture extraction should be improved to construct more realistic 3D models. Furthermore, the inside of buildings should be modeled for various potential applications in the future.

  • PDF

Extraction of Fractal Shape Characteristics of Wear Particles in Lubricant (윤활유 중지 마멸입자의 프랙탈 형상특징 추출 방법)

  • Park, Heung-Sik;Woo, Kyu-Sung;Cho, Yon-Sang;Kim, Dong-Ho;Ye, Gyoo-Heon
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.276-281
    • /
    • 2006
  • The fractal dimension is quantitatively to define the irregular characteristic of the shape in natural. It can be useful in describing morphological characteristics of various wear particles. This paper was undertaken to diagnose failure condition for sliding members in lubrication by fractal dimension. It will be possible to diagnose wear mechanism, friction and damage state of machines through analysis of shape characteristics for wear particle on driving condition by fractal parameters. In this study, the calculating and analyzing methods of fractal dimensions were constructed for the condition monitoring and wear particle analysis in lubricant condition. So, we carried out the Friction and wear test with the ball on disk type tester, and the fractal parameters of wear particle in lubricated conditions were calculated. Fractal parameters were defined as texture fractal dimension ($D_{t}$), structure fractal dimension ($D_{s}$) and total fractal dimension (D).

Region-Based Facial Expression Recognition in Still Images

  • Nagi, Gawed M.;Rahmat, Rahmita O.K.;Khalid, Fatimah;Taufik, Muhamad
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.173-188
    • /
    • 2013
  • In Facial Expression Recognition Systems (FERS), only particular regions of the face are utilized for discrimination. The areas of the eyes, eyebrows, nose, and mouth are the most important features in any FERS. Applying facial features descriptors such as the local binary pattern (LBP) on such areas results in an effective and efficient FERS. In this paper, we propose an automatic facial expression recognition system. Unlike other systems, it detects and extracts the informative and discriminant regions of the face (i.e., eyes, nose, and mouth areas) using Haar-feature based cascade classifiers and these region-based features are stored into separate image files as a preprocessing step. Then, LBP is applied to these image files for facial texture representation and a feature-vector per subject is obtained by concatenating the resulting LBP histograms of the decomposed region-based features. The one-vs.-rest SVM, which is a popular multi-classification method, is employed with the Radial Basis Function (RBF) for facial expression classification. Experimental results show that this approach yields good performance for both frontal and near-frontal facial images in terms of accuracy and time complexity. Cohn-Kanade and JAFFE, which are benchmark facial expression datasets, are used to evaluate this approach.

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.

Soft Sensor Design Using Image Analysis and its Industrial Applications Part 1. Estimation and Monitoring of Product Appearance (화상분석을 이용한 소프트 센서의 설계와 산업응용사례 1. 외관 품질의 수치적 추정과 모니터링)

  • Liu, J. Jay
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.475-482
    • /
    • 2010
  • In this work, soft sensor based on image anlaysis is proposed for quantitatively estimating the visual appearance of manufactured products and is applied to quality monitoring. The methodology consists of three steps; (1) textural feature extraction from product images using wavelet transform, (2) numerical estimation of the product appearance through projection of the textural features on subspace, and (3) use of latent variables of textural features (i.e., numerical estimates of product appearance). The focus of this approach is on the consistent and quantitative estimation of continuous variations in visual appearance rather than on classification into discrete classes. This approach is illustrated through the application to the estimation and monitoring of the appearance of engineered stone countertops.

A Face Tracking Algorithm for Multi-view Display System

  • Han, Chung-Shin;Go, Min Soo;Seo, Young-Ho;Kim, Dong-Wook;Yoo, Ji-Sang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • This paper proposes a face tracking algorithm for a viewpoint adaptive multi-view synthesis system. The original scene captured by a depth camera contains a texture image and 8 bit gray-scale depth map. From this original image, multi-view images that correspond to the viewer's position can be synthesized using geometrical transformations, such as rotation and translation. The proposed face tracking technique gives a motion parallax cue by different viewpoints and view angles. In the proposed algorithm, the viewer's dominant face, which is established initially from a camera, can be tracked using the statistical characteristics of face colors and deformable templates. As a result, a motion parallax cue can be provided by detecting the viewer's dominant face area and tracking it, even under a heterogeneous background, and synthesized sequences can be displayed successfully.

  • PDF