• 제목/요약/키워드: textile structures

검색결과 183건 처리시간 0.022초

동적 충격하중에 의한 미소균열 직조복합구조의 특성 (Micro-Cracked Textile Composite Structures‘ Behavior on the Dynamic Impact Loading)

  • 허해규;김민성;정재권;김용진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.222-227
    • /
    • 2008
  • This study is focused on an integrated numerical modeling enabling one to investigate the dynamic behavior and failure of 2-D textile composite and 3-D orthogonal woven composite structures weakened by micro-cracks and subjected to an impact load. The integrated numerical modeling is based on: I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, II) development of an efficient computational approach enabling one to perform transient response analyses of 2-D plain woven and 3-D orthogonal woven composite structures featuring the matrix cracking and exposed to time-dependent loads, III) determination of the structural characteristics of the textile-layered composites and their degraded features under various geometrical yarn shapes, and finally, IV) assessment of the implications of stiffness degradation on dynamic response to impact loads.

  • PDF

DTP(Digital Textile Printing)에서 미디어의 원사꼬임 및 편성구조가 프린팅 Quality에 미치는 영향(2) (Effects on Printing Quality according to Yarn Twist and Knitting Structure of Media in Digital Textile Printing(II))

  • 박순영;전동원;박윤철;이범수
    • 한국염색가공학회지
    • /
    • 제23권1호
    • /
    • pp.35-42
    • /
    • 2011
  • For high quality DTP products, it is important to optimize the parameters of media, pre- and after-treatment, ink, printer, etc. This study investigated the effect of types of fabrics(media) as a DTP parameters. Especially, the effects of media properties such as yarn twist and knitted fabric structure, on printability and color difference were examined. Two types of cotton yarn twist(830 and 1630 twist/meter) and five knitted structures of media were prepared with a single circular knitting machine. The K/S values of hard-twist samples were higher than those of normal-twist samples in every media structures. It is more effective to use the knitted fabrics of a hard-twist yarn to obtain dark color in the printing above input level value 60 where the printability improvement was most pronounced in case of plain structure. Among the five media structures a plain structure was the highest and that of corduroy was the lowest in terms of K/S values. Also ${\Delta}E$ values and lightness of the hard-twist yarn samples were smaller than that of normal-twist yarn samples when ${\Delta}E$ values were tested by using a standard of a normal twist yarn sample with a plain structure, which was increased in the case of corduroy structure.

Synthesis of New Phospholipid Biocompatible Textile Finishing Agent

  • Ko, Yong-Il;Yi, Jong-Woo;Kim, Sung-Hoon;Bae, Jin-Seok
    • 한국염색가공학회지
    • /
    • 제22권4호
    • /
    • pp.293-299
    • /
    • 2010
  • A methacrylate monomer having phospholipid polar group and cell membrane structure is known as highly biocompatible. Based on these properties, new biocompatible multi-functional textile finishing agent was developed using phospolipid copolymer. 2-Methacryloyloxyethyl phosphorylcholine (MPCE) was synthesized using 2-hydroxyethyl methacrylate (HEMA), 2-chloro-2-oxo-1,3,2-dioxaphospholane (COP) and triethylamine (TEA), and then polymerized to prepare MPCE copolymer by radical polymerization using azobisisobutyronitrile(AIBN). The structures of MPCE was characterized by FT-IR and 1H NMR and will be evaluated as textile finishing agent in further study.

영상처리 기법을 이용한 실시간 섬유 성량 검사 시스템 개발 (A Study for the Real-Time Textile Dimension Inspection System Using Image Processing Technique)

  • 이응주;배성호
    • 한국정보처리학회논문지
    • /
    • 제7권3호
    • /
    • pp.992-999
    • /
    • 2000
  • Textile dimension inspection is one of the basic issues in the textile dyeing and finishing industry. And also, it a plays an important role in the quality control of total fabric products. In this paper, we implement a real-time textile dimension inspection system which detects various real defects, defects positions of textile and the density of textiles. The proposed method consists of textile density measurement algorithms with zone-occurrence features from subband image which detect various types of real defects. The performance of the proposed method is tested with a number of real textile samples with 10 types of defects and three basic structures of textile. By the dimension inspection of textile at continuous stages in the fabrication process, it is possible to measure the density of textile up to 150m/min and to detect the defect of textile at real time within $\pm$1% error percentages. And also it can be monitored the condition of textile throughout at all the significant working process and can be improved textile quality.

  • PDF

Synthesis of New Biocompatible Multi-Functional Textile Finishing Agent

  • Ko, Young-Il;Jung, Chul-Won;Kim, Sung-Hoon;Bae, Jin-Seok
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2009년도 학술발표대회
    • /
    • pp.160-161
    • /
    • 2009
  • A methacrylate monomer having phospholipid polar group and cell membrane structure is known as highly biocompatible. Based on these properties, new biocompatible multi-functional textile finishing agent was developed using phospolipid copolymer. 2-Methacryloyloxyethyl phosphorylcholine (MPC) was synthesized using 2-hydroxyethyl methacrylate (HEMA), 2-chloro-2-oxo-1,3,2-dioxaphospholane (COP), trimethylamine (TMA) and triethylamine (TEA), and then polymerized to prepare MPC copolymer by radical polymerization using AIBN. The structures of MPC and MPCE were characterized by FTIR and 1H NMR and will be evaluated as textile finishing agent in further study.

  • PDF

Development of Customized Textile Design using AI Technology -A Case of Korean Traditional Pattern Design-

  • Dawool Jung;Sung-Eun Suh
    • 한국의류학회지
    • /
    • 제47권6호
    • /
    • pp.1137-1156
    • /
    • 2023
  • With the advent of artificial intelligence (AI) during the Fourth Industrial Revolution, the fashion industry has simplified the production process and overcome the technical difficulties of design. This study anticipates likely changes in the digital age and develops a model that will allow consumers to design textile patterns using AI technology. Previous studies and industrial examples of AI technology's use in the textile design industry were investigated, and a textile pattern was developed using an AI algorithm. A new textile design model was then proposed based on its application to both virtual and physical clothing. Inspired by traditional Korean masks and props, AI technology was used to input color data from open application programming interface images. By inserting these into various repeating structures, a textile design was developed and simulated as garments for both virtual and real garments. We expect that this study will establish a new textile design development method for Generation Z, who favor customized designs. This study can inform the use of personalization in generative textile design as well as the systemization of technology-driven methods for customized and participatory textile design.

Thermal Properties of Copolyetherester/silica Nanocomposites

  • Baik, Doo-Hyun;Kim, Hae-Young;Kwon, Sun-Jin;Kwon, Myung-Hyun;Lee, Han-Sup;Youk, Ji-Ho;Seo, Seung-Won
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.367-371
    • /
    • 2006
  • Thermal properties of copolyetherester/silica nanocomposites were examined by using DSC and TGA. The segmented block copolyetheresters with various hard segment structures and hard segment contents (HSC) were synthesized and their silica nanocomposite films were prepared by solution casting method. The nano-sized fumed silica particles were found to act as a nucleating agent of the copolyetheresters. The nanocomposites always showed reduced degree of supercooling or faster crystallization than the corresponding copolyetheresters. The nanocomposites also showed increased hard segment crystallinity except HSC 35 sample which had short hard segment length. In case of 2GT [poly(ethylene terephthalate)] copolyetheresters, which were not developed commercially because of their low crystallization rate, the hard segment crystallinity increased considerably. The copolyetherester/silica nanocomposites showed better thermal stability than copolyetheresters.

유기발광섬유 (Organic light emitting filaments)

  • Park, Jukwang;Lee, Junghoon;Chang Seoul
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.358-359
    • /
    • 2003
  • Organic light-emitting device have attracted much interest due to their potential application in large area, full color, flat panel displays. Poly(p-phenylene)(PPP), as a blue light-emitting materials, have studied in our previous report. Thus, we selected poly(p-phenylene) (PPP) to fabricate the organic light-emitting filaments(OLEF) [1-2]. In this paper, we fabricated an organic light-emitting filaments(OLEF), which can be woven into fabric. The key concept was flexibility in one-dimensional structures. (omitted)

  • PDF

Preparation and Properties of Segmented Polyurethane Elastomers with Two Different Soft Segments

  • Lee, Tae-Jung;Huh, Jae-Ho;Kim, Han-Do
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.1-4
    • /
    • 1998
  • Segmented Polyurethanes Elastomers are a class of polymers having interesting properties which arise from their unique phase-separated structures resulting from the thermodynamic incompatibility of the ingredients[1]. Segmented polyurethane Elastomer generally consists of a segment derived from a polymeric diol and a hard segment from a diisocyanate and a low molecular weight diol(chain extender).(omitted)

  • PDF